The Rotation Matrix is an Orthogonal Transformation
Problem 684
Let $\mathbb{R}^2$ be the vector space of size-2 column vectors. This vector space has an inner product defined by $ \langle \mathbf{v} , \mathbf{w} \rangle = \mathbf{v}^\trans \mathbf{w}$. A linear transformation $T : \R^2 \rightarrow \R^2$ is called an orthogonal transformation if for all $\mathbf{v} , \mathbf{w} \in \R^2$,
\[\langle T(\mathbf{v}) , T(\mathbf{w}) \rangle = \langle \mathbf{v} , \mathbf{w} \rangle.\]
For a fixed angle $\theta \in [0, 2 \pi )$ , define the matrix
\[ [T] = \begin{bmatrix} \cos (\theta) & – \sin ( \theta ) \\ \sin ( \theta ) & \cos ( \theta ) \end{bmatrix} \]
and the linear transformation $T : \R^2 \rightarrow \R^2$ by
\[T( \mathbf{v} ) = [T] \mathbf{v}.\]
This proves that $T$ is an orthogonal transformation. For the second-to-last equality, we used the Pythagorean identity $\sin^2 ( \theta ) + \cos^2 ( \theta ) = 1$.
Rotation Matrix in Space and its Determinant and Eigenvalues
For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\]
(a) Find the determinant of the matrix $A$.
(b) Show that $A$ is an […]
The Sum of Cosine Squared in an Inner Product Space
Let $\mathbf{v}$ be a vector in an inner product space $V$ over $\R$.
Suppose that $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis of $V$.
Let $\theta_i$ be the angle between $\mathbf{v}$ and $\mathbf{u}_i$ for $i=1,\dots, n$.
Prove that
\[\cos […]
An Orthogonal Transformation from $\R^n$ to $\R^n$ is an Isomorphism
Let $\R^n$ be an inner product space with inner product $\langle \mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\trans}\mathbf{y}$ for $\mathbf{x}, \mathbf{y}\in \R^n$.
A linear transformation $T:\R^n \to \R^n$ is called orthogonal transformation if for all $\mathbf{x}, \mathbf{y}\in […]
Rotation Matrix in the Plane and its Eigenvalues and Eigenvectors
Consider the $2\times 2$ matrix
\[A=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta \end{bmatrix},\]
where $\theta$ is a real number $0\leq \theta < 2\pi$.
(a) Find the characteristic polynomial of the matrix $A$.
(b) Find the […]
Determine Trigonometric Functions with Given Conditions
(a) Find a function
\[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 \theta)\]
such that $g(0) = g(\pi/2) = g(\pi) = 0$, where $a, b, c$ are constants.
(b) Find real numbers $a, b, c$ such that the function
\[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 […]
Cosine and Sine Functions are Linearly Independent
Let $C[-\pi, \pi]$ be the vector space of all continuous functions defined on the interval $[-\pi, \pi]$.
Show that the subset $\{\cos(x), \sin(x)\}$ in $C[-\pi, \pi]$ is linearly independent.
Proof.
Note that the zero vector in the vector space $C[-\pi, \pi]$ is […]
Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$
Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$.
(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ […]