The Rotation Matrix is an Orthogonal Transformation

Linear Transformation problems and solutions

Problem 684

Let $\mathbb{R}^2$ be the vector space of size-2 column vectors. This vector space has an inner product defined by $ \langle \mathbf{v} , \mathbf{w} \rangle = \mathbf{v}^\trans \mathbf{w}$. A linear transformation $T : \R^2 \rightarrow \R^2$ is called an orthogonal transformation if for all $\mathbf{v} , \mathbf{w} \in \R^2$,
\[\langle T(\mathbf{v}) , T(\mathbf{w}) \rangle = \langle \mathbf{v} , \mathbf{w} \rangle.\]

For a fixed angle $\theta \in [0, 2 \pi )$ , define the matrix
\[ [T] = \begin{bmatrix} \cos (\theta) & – \sin ( \theta ) \\ \sin ( \theta ) & \cos ( \theta ) \end{bmatrix} \] and the linear transformation $T : \R^2 \rightarrow \R^2$ by
\[T( \mathbf{v} ) = [T] \mathbf{v}.\]

Prove that $T$ is an orthogonal transformation.

 
LoadingAdd to solve later

Sponsored Links

Solution.

Suppose we have vectors $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} $ . Then,
\[T(\mathbf{v}) = \begin{bmatrix} \cos (\theta) & – \sin ( \theta ) \\ \sin ( \theta ) & \cos ( \theta ) \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) v_1 – \sin (\theta) v_2 \\ \sin(\theta) v_1 + \cos (\theta) v_2 \end{bmatrix},\] and
\[ T(\mathbf{w}) = \begin{bmatrix} \cos (\theta) & – \sin ( \theta ) \\ \sin ( \theta ) & \cos ( \theta ) \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} = \begin{bmatrix} \cos(\theta) w_1 – \sin (\theta) w_2 \\ \sin(\theta) w_1 + \cos (\theta) w_2 \end{bmatrix}.\]


Then we find the inner product for these two vectors:
\begin{align*}
&\langle T(\mathbf{v} ) , T( \mathbf{w} ) \rangle \\
&= \begin{bmatrix} \cos(\theta) v_1 – \sin (\theta) v_2 & \sin(\theta) v_1 + \cos (\theta) v_2 \end{bmatrix} \begin{bmatrix} \cos(\theta) w_1 – \sin (\theta) w_2 \\ \sin(\theta) w_1 + \cos (\theta) w_2 \end{bmatrix} \\[6pt] &= \biggl( \cos(\theta) v_1 – \sin(\theta) v_2 \biggr) \biggl( \cos(\theta) w_1 – \sin ( \theta) w_2 \biggr) \\[6pt] &\qquad + \biggl( \sin (\theta) v_1 + \cos (\theta) v_2 \biggr) \biggl( \sin (\theta) w_1 + \cos(\theta) w_2 \biggr) \\[6pt] &= \cos^2(\theta) ( v_1 w_1 + v_2 w_2 ) + \sin(\theta) \cos(\theta) ( – v_1 w_2 – v_2 w_1 + v_1 w_2 + v_2 w_1 ) \\ &\qquad + \sin^2 (\theta) ( v_2 w_2 + v_1 w_1 ) \\[6pt] &= \left( \cos^2 ( \theta) + \sin^2 ( \theta ) \right) ( v_1 w_1 + v_2 w_2 ) \\
&= v_1 w_1 + v_2 w_2 \\
&= \langle \mathbf{v} , \mathbf{w} \rangle .
\end{align*}


This proves that $T$ is an orthogonal transformation. For the second-to-last equality, we used the Pythagorean identity $\sin^2 ( \theta ) + \cos^2 ( \theta ) = 1$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
  • The Sum of Cosine Squared in an Inner Product SpaceThe Sum of Cosine Squared in an Inner Product Space Let $\mathbf{v}$ be a vector in an inner product space $V$ over $\R$. Suppose that $\{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ is an orthonormal basis of $V$. Let $\theta_i$ be the angle between $\mathbf{v}$ and $\mathbf{u}_i$ for $i=1,\dots, n$. Prove that \[\cos […]
  • An Orthogonal Transformation from $\R^n$ to $\R^n$ is an IsomorphismAn Orthogonal Transformation from $\R^n$ to $\R^n$ is an Isomorphism Let $\R^n$ be an inner product space with inner product $\langle \mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{\trans}\mathbf{y}$ for $\mathbf{x}, \mathbf{y}\in \R^n$. A linear transformation $T:\R^n \to \R^n$ is called orthogonal transformation if for all $\mathbf{x}, \mathbf{y}\in […]
  • Rotation Matrix in the Plane and its Eigenvalues and EigenvectorsRotation Matrix in the Plane and its Eigenvalues and Eigenvectors Consider the $2\times 2$ matrix \[A=\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix},\] where $\theta$ is a real number $0\leq \theta < 2\pi$.   (a) Find the characteristic polynomial of the matrix $A$. (b) Find the […]
  • Determine Trigonometric Functions with Given ConditionsDetermine Trigonometric Functions with Given Conditions (a) Find a function \[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 \theta)\] such that $g(0) = g(\pi/2) = g(\pi) = 0$, where $a, b, c$ are constants. (b) Find real numbers $a, b, c$ such that the function \[g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 […]
  • Cosine and Sine Functions are Linearly IndependentCosine and Sine Functions are Linearly Independent Let $C[-\pi, \pi]$ be the vector space of all continuous functions defined on the interval $[-\pi, \pi]$. Show that the subset $\{\cos(x), \sin(x)\}$ in $C[-\pi, \pi]$ is linearly independent.   Proof. Note that the zero vector in the vector space $C[-\pi, \pi]$ is […]
  • Prove that the Dot Product is Commutative: $\mathbf{v}\cdot \mathbf{w}= \mathbf{w} \cdot \mathbf{v}$Prove that the Dot Product is Commutative: $\mathbf{v}\cdot \mathbf{w}= \mathbf{w} \cdot \mathbf{v}$ Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors. (a) Prove that $\mathbf{v}^\trans \mathbf{w} = \mathbf{w}^\trans \mathbf{v}$. (b) Provide an example to show that $\mathbf{v} \mathbf{w}^\trans$ is not always equal to $\mathbf{w} […]
  • Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$Subspace Spanned by Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$ Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$. Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$. (a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Vector Space Problems and Solutions
The Coordinate Vector for a Polynomial with respect to the Given Basis

Let $\mathrm{P}_3$ denote the set of polynomials of degree $3$ or less with real coefficients. Consider the ordered basis \[B...

Close