If the Order is an Even Perfect Number, then a Group is not Simple
(a) Show that if a group $G$ has the following order, then it is not simple.
$28$
$496$
$8128$
(b) Show that if the order of a group $G$ is equal to an even perfect number then the group is not simple.
Hint.
Use Sylow's theorem.
(See the post Sylow’s Theorem […]

A Condition that a Vector is a Linear Combination of Columns Vectors of a Matrix
Suppose that an $n \times m$ matrix $M$ is composed of the column vectors $\mathbf{b}_1 , \cdots , \mathbf{b}_m$.
Prove that a vector $\mathbf{v} \in \R^n$ can be written as a linear combination of the column vectors if and only if there is a vector $\mathbf{x}$ which solves the […]

A Diagonalizable Matrix which is Not Diagonalized by a Real Nonsingular Matrix
Prove that the matrix
\[A=\begin{bmatrix}
0 & 1\\
-1& 0
\end{bmatrix}\]
is diagonalizable.
Prove, however, that $A$ cannot be diagonalized by a real nonsingular matrix.
That is, there is no real nonsingular matrix $S$ such that $S^{-1}AS$ is a diagonal […]

Rank of the Product of Matrices $AB$ is Less than or Equal to the Rank of $A$
Let $A$ be an $m \times n$ matrix and $B$ be an $n \times l$ matrix. Then prove the followings.
(a) $\rk(AB) \leq \rk(A)$.
(b) If the matrix $B$ is nonsingular, then $\rk(AB)=\rk(A)$.
Hint.
The rank of an $m \times n$ matrix $M$ is the dimension of the range […]

Quotient Group of Abelian Group is Abelian
Let $G$ be an abelian group and let $N$ be a normal subgroup of $G$.
Then prove that the quotient group $G/N$ is also an abelian group.
Proof.
Each element of $G/N$ is a coset $aN$ for some $a\in G$.
Let $aN, bN$ be arbitrary elements of $G/N$, where $a, b\in […]

Group Homomorphism from $\Z/n\Z$ to $\Z/m\Z$ When $m$ Divides $n$
Let $m$ and $n$ be positive integers such that $m \mid n$.
(a) Prove that the map $\phi:\Zmod{n} \to \Zmod{m}$ sending $a+n\Z$ to $a+m\Z$ for any $a\in \Z$ is well-defined.
(b) Prove that $\phi$ is a group homomorphism.
(c) Prove that $\phi$ is surjective.
(d) Determine […]

Transpose of a Matrix and Eigenvalues and Related Questions
Let $A$ be an $n \times n$ real matrix. Prove the followings.
(a) The matrix $AA^{\trans}$ is a symmetric matrix.
(b) The set of eigenvalues of $A$ and the set of eigenvalues of $A^{\trans}$ are equal.
(c) The matrix $AA^{\trans}$ is non-negative definite.
(An $n\times n$ […]

Complement of Independent Events are Independent
Let $E$ and $F$ be independent events. Let $F^c$ be the complement of $F$.
Prove that $E$ and $F^c$ are independent as well.
Solution.
Note that $E\cap F$ and $E \cap F^c$ are disjoint and $E = (E \cap F) \cup (E \cap F^c)$. It follows that
\[P(E) = P(E \cap F) + P(E […]