# symmetric-matrix

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- The Matrix $[A_1, \dots, A_{n-1}, A\mathbf{b}]$ is Always Singular, Where $A=[A_1,\dots, A_{n-1}]$ and $\mathbf{b}\in \R^{n-1}$. Let $A$ be an $n\times (n-1)$ matrix and let $\mathbf{b}$ be an $(n-1)$-dimensional vector. Then the product $A\mathbf{b}$ is an $n$-dimensional vector. Set the $n\times n$ matrix $B=[A_1, A_2, \dots, A_{n-1}, A\mathbf{b}]$, where $A_i$ is the $i$-th column vector of […]
- Prove that any Algebraic Closed Field is Infinite Prove that any algebraic closed field is infinite. Definition. A field $F$ is said to be algebraically closed if each non-constant polynomial in $F[x]$ has a root in $F$. Proof. Let $F$ be a finite field and consider the polynomial \[f(x)=1+\prod_{a\in […]
- Find a Value of a Linear Transformation From $\R^2$ to $\R^3$ Let $T:\R^2 \to \R^3$ be a linear transformation such that $T(\mathbf{e}_1)=\mathbf{u}_1$ and $T(\mathbf{e}_2)=\mathbf{u}_2$, where $\mathbf{e}_1=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{e}_2=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are unit vectors of $\R^2$ and […]
- Torsion Submodule, Integral Domain, and Zero Divisors Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$. The set of torsion elements is denoted \[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\] (a) Prove that if $R$ is an […]
- Example of an Element in the Product of Ideals that Cannot be Written as the Product of Two Elements Let $I=(x, 2)$ and $J=(x, 3)$ be ideal in the ring $\Z[x]$. (a) Prove that $IJ=(x, 6)$. (b) Prove that the element $x\in IJ$ cannot be written as $x=f(x)g(x)$, where $f(x)\in I$ and $g(x)\in J$. Hint. If $I=(a_1,\dots, a_m)$ and $J=(b_1, \dots, b_n)$ are […]
- All Linear Transformations that Take the Line $y=x$ to the Line $y=-x$ Determine all linear transformations of the $2$-dimensional $x$-$y$ plane $\R^2$ that take the line $y=x$ to the line $y=-x$. Solution. Let $T:\R^2 \to \R^2$ be a linear transformation that maps the line $y=x$ to the line $y=-x$. Note that the linear […]
- The Inverse Matrix is Unique Let $A$ be an $n\times n$ invertible matrix. Prove that the inverse matrix of $A$ is uniques. Hint. That the inverse matrix of $A$ is unique means that there is only one inverse matrix of $A$. (That's why we say "the" inverse matrix of $A$ and denote it by […]
- Find All Matrices $B$ that Commutes With a Given Matrix $A$: $AB=BA$ Let \[A=\begin{bmatrix} 1 & 3\\ 2& 4 \end{bmatrix}.\] Then (a) Find all matrices \[B=\begin{bmatrix} x & y\\ z& w \end{bmatrix}\] such that $AB=BA$. (b) Use the results of part (a) to exhibit $2\times 2$ matrices $B$ and $C$ such that \[AB=BA \text{ and } […]