The Subspace of Linear Combinations whose Sums of Coefficients are zero

Linear algebra problems and solutions

Problem 581

Let $V$ be a vector space over a scalar field $K$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset
\[W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } a_1+a_2+\cdots+a_k=0\}.\] So each element of $W$ is a linear combination of vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ such that the sum of the coefficients is zero.

Prove that $W$ is a subspace of $V$.

 
LoadingAdd to solve later

Sponsored Links


We give two proofs.

Proof 1. (Subspace Criteria)

We use the following subspace criteria.
The subset $W$ is a subspace of $V$ if the following three conditions are met.

  1. The zero vector in $V$ is in $W$.
  2. For any two elements $\mathbf{v}, \mathbf{v}’ \in W$, we have $\mathbf{v}+\mathbf{v}’ \in W$.
  3. For any scalar $c\in K$ and any element $\mathbf{v} \in W$, we have $c\mathbf{v}\in W$.

The zero vector $\mathbf{0}$ of $V$ can be written as
\[\mathbf{0}=0\mathbf{v}_1+0\mathbf{v}_2+\cdots+0\mathbf{v}_k.\] Clearly the sum of the coefficient is zero, hence $\mathbf{0} \in W$.
So condition 1 is met.


To verify condition 2, let
\[\mathbf{v}=a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k\] and
\[\mathbf{v}’=b_1\mathbf{v}_1+b_2\mathbf{v}_2+\cdots+ b_k\mathbf{v}_k\] be arbitrary elements in $W$. Thus
\[a_1+a_2+\cdots+a_k=0 \text{ and } b_1+b_2+\cdots+b_k=0. \tag{*}\] The sum $\mathbf{v}+\mathbf{v}’$ is
\begin{align*}
\mathbf{v}+\mathbf{v}’&=(a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k)+(b_1\mathbf{v}_1+b_2\mathbf{v}_2+\cdots+ b_k\mathbf{v}_k)\\
&=(a_1+b_1)\mathbf{v}_1+(a_2+b_2)\mathbf{v}_2+\cdots+(a_k+b_k)\mathbf{v}_k.
\end{align*}
The the sum of the coefficients of the above linear combination is
\begin{align*}
&(a_1+b_1)+(a_2+b_2)+\cdots+(a_k+b_k)\\
&=(a_1+a_2+\cdots+a_k)+(b_1+b_2+\cdots+b_k) \stackrel{(*)}{=} 0+0=0.
\end{align*}
It follows that the sum $\mathbf{v}+\mathbf{v}’$ is in $W$, and hence condition 2 is met.


Finally, let us check condition 3. Let
\[\mathbf{v}=a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k\] be an arbitrary vector in $W$ and let $c\in K$.
Since $\mathbf{v}\in W$, we have
\[a_1+a_2+\cdots+a_k=0.\] Then the scalar product is
\begin{align*}
c\mathbf{v}&=c(a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k)\\
&=ca_1\mathbf{v}_1+ca_2\mathbf{v}_2+\cdots+ ca_k\mathbf{v}_k.
\end{align*}
The sum of the coefficients of the linear combination is
\begin{align*}
ca_1+ca_2+\cdots+ ca_k=c(a_1+a_2+\cdots+a_k)=a0=0.
\end{align*}
Hence $c\mathbf{v}\in V$, and condition 3 is met.

Therefore by the subspace criteria, we conclude that $W$ is a subspace of $V$.

Proof 2. (Span)

Consider an arbitrary vector in $W$:
\[a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \text{ with } a_1+a_2+\cdots+a_k=0.\] Substituting the relation $a_k=-(a_1+a_2+\cdots+a_{k-1})$, we obtain
\begin{align*}
&a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+a_{k-1}\mathbf{v}_{k-1}+ a_k\mathbf{v}_k\\
&=a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots +a_{k-1}\mathbf{v}_{k-1}-(a_1+a_2+\cdots+a_{k-1})\mathbf{v}_k\\
&=a_1(\mathbf{v}_1-\mathbf{v}_k)+a_2(\mathbf{v}_2-\mathbf{v}_k)+\cdots+a_{k-1}(\mathbf{v}_{k-1}-\mathbf{v}_{k-1}).
\end{align*}
This computation yields that every vector in $W$ is a linear combination of vectors in
\[S:=\{\mathbf{v}_1-\mathbf{v}_k, \mathbf{v}_2-\mathbf{v}_k,\dots, \mathbf{v}_{k-1}-\mathbf{v}_{k-1}\}.\] That is, we have $W\subset \Span(S)$.


On the other hand, let
\[\mathbf{v}=c_1(\mathbf{v}_1-\mathbf{v}_k)+c_2(\mathbf{v}_2-\mathbf{v}_k)+\cdots+c_{k-1}(\mathbf{v}_{k-1}-\mathbf{v}_{k-1})\] be an arbitrary vector in $\Span(S)$.
Then we have
\begin{align*}
\mathbf{v}&=c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots +c_{k-1}\mathbf{v}_{k-1}-(c_1+c_2+\cdots+c_{k-1})\mathbf{v}_k.
\end{align*}
This is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$, and the sum of the coefficients is
\[c_1+c_2+\cdots +c_{k-1}-(c_1+c_2+\cdots+c_{k-1})=0.\] Therefore $\mathbf{v}\in W$. Thus we also have $\Span(S)\subset W$.


Putting together these inclusion yields that $W=\Span(S)$.
As the span is always a subspace, we conclude that $W$ is a subspace of $V$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Show the Subset of the Vector Space of Polynomials is a Subspace and Find its BasisShow the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient. Let $W$ be the following subset of $P_3$. \[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and […]
  • The Subset Consisting of the Zero Vector is a Subspace and its Dimension is ZeroThe Subset Consisting of the Zero Vector is a Subspace and its Dimension is Zero Let $V$ be a subset of the vector space $\R^n$ consisting only of the zero vector of $\R^n$. Namely $V=\{\mathbf{0}\}$. Then prove that $V$ is a subspace of $\R^n$.   Proof. To prove that $V=\{\mathbf{0}\}$ is a subspace of $\R^n$, we check the following subspace […]
  • Linear Independent Vectors and the Vector Space Spanned By ThemLinear Independent Vectors and the Vector Space Spanned By Them Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. Let […]
  • Does an Extra Vector Change the Span?Does an Extra Vector Change the Span? Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^5$. If $\mathbf{v}_4$ is another vector in $V$, then is the set \[S_2=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}\] still a spanning set for […]
  • Find a basis for $\Span(S)$, where $S$ is a Set of Four VectorsFind a basis for $\Span(S)$, where $S$ is a Set of Four Vectors Find a basis for $\Span(S)$ where $S= \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} , \begin{bmatrix} -1 \\ -2 \\ -1 \end{bmatrix} , \begin{bmatrix} 2 \\ 6 \\ -2 \end{bmatrix} , \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} \right\}$.   Solution. We […]
  • Find a Basis and the Dimension of the Subspace of the 4-Dimensional Vector SpaceFind a Basis and the Dimension of the Subspace of the 4-Dimensional Vector Space Let $V$ be the following subspace of the $4$-dimensional vector space $\R^4$. \[V:=\left\{ \quad\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \R^4 \quad \middle| \quad x_1-x_2+x_3-x_4=0 \quad\right\}.\] Find a basis of the subspace $V$ […]
  • Determine Whether Each Set is a Basis for $\R^3$Determine Whether Each Set is a Basis for $\R^3$ Determine whether each of the following sets is a basis for $\R^3$. (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} […]
  • Find a Basis for the Subspace spanned by Five VectorsFind a Basis for the Subspace spanned by Five Vectors Let $S=\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3},\mathbf{v}_{4},\mathbf{v}_{5}\}$ where \[ \mathbf{v}_{1}= \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix} ,\;\mathbf{v}_{2}= \begin{bmatrix} 1 \\ 3 \\ 1 \\ 1 \end{bmatrix} ,\;\mathbf{v}_{3}= \begin{bmatrix} 1 \\ 5 \\ -1 […]

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra Problems and Solutions
The Column Vectors of Every $3\times 5$ Matrix Are Linearly Dependent

(a) Prove that the column vectors of every $3\times 5$ matrix $A$ are linearly dependent. (b) Prove that the row...

Close