# Math-Magic Tree Trick

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- The Trick of a Mathematical Game. The One’s Digit of the Sum of Two Numbers. Decipher the trick of the following mathematical magic. The Rule of the Game Here is the game. Pick six natural numbers ($1, 2, 3, \dots$) and place them in the yellow discs of the picture below. For example, let's say I have chosen the numbers $7, 5, 3, 2, […]
- Projection to the subspace spanned by a vector Let $T: \R^3 \to \R^3$ be the linear transformation given by orthogonal projection to the line spanned by $\begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. (a) Find a formula for $T(\mathbf{x})$ for $\mathbf{x}\in \R^3$. (b) Find a basis for the image subspace of $T$. (c) Find […]
- In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable. Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$. Comment. Remark that if $A$ is a square […]
- Is the Product of a Nilpotent Matrix and an Invertible Matrix Nilpotent? A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix. (a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent. (b) Let $P$ […]
- Can $\Z$-Module Structure of Abelian Group Extend to $\Q$-Module Structure? If $M$ is a finite abelian group, then $M$ is naturally a $\Z$-module. Can this action be extended to make $M$ into a $\Q$-module? Proof. In general, we cannot extend a $\Z$-module into a $\Q$-module. We give a counterexample. Let $M=\Zmod{2}$ be the order […]
- Using the Wronskian for Exponential Functions, Determine Whether the Set is Linearly Independent By calculating the Wronskian, determine whether the set of exponential functions \[\{e^x, e^{2x}, e^{3x}\}\] is linearly independent on the interval $[-1, 1]$. Solution. The Wronskian for the set $\{e^x, e^{2x}, e^{3x}\}$ is given […]
- Equivalent Conditions to be a Unitary Matrix A complex matrix is called unitary if $\overline{A}^{\trans} A=I$. The inner product $(\mathbf{x}, \mathbf{y})$ of complex vector $\mathbf{x}$, $\mathbf{y}$ is defined by $(\mathbf{x}, \mathbf{y}):=\overline{\mathbf{x}}^{\trans} \mathbf{y}$. The length of a complex vector […]
- If Two Matrices Have the Same Eigenvalues with Linearly Independent Eigenvectors, then They Are Equal Let $A$ and $B$ be $n\times n$ matrices. Suppose that $A$ and $B$ have the same eigenvalues $\lambda_1, \dots, \lambda_n$ with the same corresponding eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$. Prove that if the eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly […]