The Trick of a Mathematical Game. The One’s Digit of the Sum of Two Numbers.
Decipher the trick of the following mathematical magic.
The Rule of the Game
Here is the game.
Pick six natural numbers ($1, 2, 3, \dots$) and place them in the yellow discs of the picture below.
For example, let's say I have chosen the numbers $7, 5, 3, 2, […]

Top 10 Popular Math Problems in 2016-2017 It's been a year since I started this math blog!!
More than 500 problems were posted during a year (July 19th 2016-July 19th 2017).
I made a list of the 10 math problems on this blog that have the most views.
Can you solve all of them?
The level of difficulty among the top […]

Find All the Values of $x$ so that a Given $3\times 3$ Matrix is Singular
Find all the values of $x$ so that the following matrix $A$ is a singular matrix.
\[A=\begin{bmatrix}
x & x^2 & 1 \\
2 &3 &1 \\
0 & -1 & 1
\end{bmatrix}.\]
Hint.
Use the fact that a matrix is singular if and only if its determinant is […]

Compute the Determinant of a Magic Square
Let
\[
A=
\begin{bmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{bmatrix}
.
\]
Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic […]

Determine Bases for Nullspaces $\calN(A)$ and $\calN(A^{T}A)$
Determine bases for $\calN(A)$ and $\calN(A^{T}A)$ when
\[
A=
\begin{bmatrix}
1 & 2 & 1 \\
1 & 1 & 3 \\
0 & 0 & 0
\end{bmatrix}
.
\]
Then, determine the ranks and nullities of the matrices $A$ and $A^{\trans}A$.
Solution.
We will first […]

Find a Basis for the Subspace spanned by Five Vectors
Let $S=\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3},\mathbf{v}_{4},\mathbf{v}_{5}\}$ where
\[
\mathbf{v}_{1}=
\begin{bmatrix}
1 \\ 2 \\ 2 \\ -1
\end{bmatrix}
,\;\mathbf{v}_{2}=
\begin{bmatrix}
1 \\ 3 \\ 1 \\ 1
\end{bmatrix}
,\;\mathbf{v}_{3}=
\begin{bmatrix}
1 \\ 5 \\ -1 […]

If the Augmented Matrix is Row-Equivalent to the Identity Matrix, is the System Consistent?
Consider the following system of linear equations:
\begin{align*}
ax_1+bx_2 &=c\\
dx_1+ex_2 &=f\\
gx_1+hx_2 &=i.
\end{align*}
(a) Write down the augmented matrix.
(b) Suppose that the augmented matrix is row equivalent to the identity matrix. Is the system consistent? […]