Math-Magic Tree example

Math-Magic Tree example

LoadingAdd to solve later

Sponsored Links

Math-Magic Tree example


LoadingAdd to solve later

Sponsored Links

More from my site

  • The Trick of a Mathematical Game. The One’s Digit of the Sum of Two Numbers.The Trick of a Mathematical Game. The One’s Digit of the Sum of Two Numbers. Decipher the trick of the following mathematical magic.   The Rule of the Game Here is the game. Pick six natural numbers ($1, 2, 3, \dots$) and place them in the yellow discs of the picture below. For example, let's say I have chosen the numbers $7, 5, 3, 2, […]
  • Group of Order $pq$ Has a Normal Sylow Subgroup and SolvableGroup of Order $pq$ Has a Normal Sylow Subgroup and Solvable Let $p, q$ be prime numbers such that $p>q$. If a group $G$ has order $pq$, then show the followings. (a) The group $G$ has a normal Sylow $p$-subgroup. (b) The group $G$ is solvable.   Definition/Hint For (a), apply Sylow's theorem. To review Sylow's theorem, […]
  • Group of Order 18 is SolvableGroup of Order 18 is Solvable Let $G$ be a finite group of order $18$. Show that the group $G$ is solvable.   Definition Recall that a group $G$ is said to be solvable if $G$ has a subnormal series \[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\] such […]
  • A Prime Ideal in the Ring $\Z[\sqrt{10}]$A Prime Ideal in the Ring $\Z[\sqrt{10}]$ Consider the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\] and its ideal \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\] Show that $p$ is a prime ideal of the ring $\Z[\sqrt{10}]$.   Definition of a prime ideal. An ideal $P$ of a ring $R$ is […]
  • Express a Vector as a Linear Combination of Other VectorsExpress a Vector as a Linear Combination of Other Vectors Express the vector $\mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 \end{bmatrix}$ as a linear combination of the vectors \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v}_2= \begin{bmatrix} 1 \\ 2 \\ 1 […]
  • Ring of Gaussian Integers and Determine its Unit ElementsRing of Gaussian Integers and Determine its Unit Elements Denote by $i$ the square root of $-1$. Let \[R=\Z[i]=\{a+ib \mid a, b \in \Z \}\] be the ring of Gaussian integers. We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to \[N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.\] Here $\bar{\alpha}$ is the complex conjugate of […]
  • If Two Ideals Are Comaximal in a Commutative Ring, then Their Powers Are Comaximal IdealsIf Two Ideals Are Comaximal in a Commutative Ring, then Their Powers Are Comaximal Ideals Let $R$ be a commutative ring and let $I_1$ and $I_2$ be comaximal ideals. That is, we have \[I_1+I_2=R.\] Then show that for any positive integers $m$ and $n$, the ideals $I_1^m$ and $I_2^n$ are comaximal.   > Proof. Since $I_1+I_2=R$, there exists $a \in I_1$ […]
  • Every Prime Ideal is Maximal if $a^n=a$ for any Element $a$ in the Commutative RingEvery Prime Ideal is Maximal if $a^n=a$ for any Element $a$ in the Commutative Ring Let $R$ be a commutative ring with identity $1\neq 0$. Suppose that for each element $a\in R$, there exists an integer $n > 1$ depending on $a$. Then prove that every prime ideal is a maximal ideal.   Hint. Let $R$ be a commutative ring with $1$ and $I$ be an ideal […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.