# top10mathproblems2017

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Express a Vector as a Linear Combination of Given Three Vectors Let \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 […]
- Find the Nullspace and Range of the Linear Transformation $T(f)(x) = f(x)-f(0)$ Let $C([-1, 1])$ denote the vector space of real-valued functions on the interval $[-1, 1]$. Define the vector subspace \[W = \{ f \in C([-1, 1]) \mid f(0) = 0 \}.\] Define the map $T : C([-1, 1]) \rightarrow W$ by $T(f)(x) = f(x) - f(0)$. Determine if $T$ is a linear map. If […]
- Using Gram-Schmidt Orthogonalization, Find an Orthogonal Basis for the Span Using Gram-Schmidt orthogonalization, find an orthogonal basis for the span of the vectors $\mathbf{w}_{1},\mathbf{w}_{2}\in\R^{3}$ if \[ \mathbf{w}_{1} = \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix} ,\quad \mathbf{w}_{2} = \begin{bmatrix} 2 \\ -1 \\ […]
- Prove $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ and determine those $\mathbf{x}$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$ For each of the following matrix $A$, prove that $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ for all vectors $\mathbf{x}$ in $\R^2$. Also, determine those vectors $\mathbf{x}\in \R^2$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$. (a) $A=\begin{bmatrix} 4 & 2\\ 2& […]
- Does the Trace Commute with Matrix Multiplication? Is $\tr (A B) = \tr (A) \tr (B) $? Let $A$ and $B$ be $n \times n$ matrices. Is it always true that $\tr (A B) = \tr (A) \tr (B) $? If it is true, prove it. If not, give a counterexample. Solution. There are many counterexamples. For one, take \[A = \begin{bmatrix} 1 & 0 \\ 0 & 0 […]
- Is the Map $T (f) (x) = f(x) – x – 1$ a Linear Transformation between Vector Spaces of Polynomials? Let $\mathrm{P}_n$ be the vector space of polynomials of degree at most $n$. The set $B = \{ 1 , x , x^2 , \cdots , x^n \}$ is a basis of $\mathrm{P}_n$, called the standard basis. Let $T : \mathrm{P}_4 \rightarrow \mathrm{P}_{4}$ be the map defined by, for $f \in \mathrm{P}_4$, \[ […]
- Abelian Groups and Surjective Group Homomorphism Let $G, G'$ be groups. Suppose that we have a surjective group homomorphism $f:G\to G'$. Show that if $G$ is an abelian group, then so is $G'$. Definitions. Recall the relevant definitions. A group homomorphism $f:G\to G'$ is a map from $G$ to $G'$ […]
- The Quotient by the Kernel Induces an Injective Homomorphism Let $G$ and $G'$ be a group and let $\phi:G \to G'$ be a group homomorphism. Show that $\phi$ induces an injective homomorphism from $G/\ker{\phi} \to G'$. Outline. Define $\tilde{\phi}([g])=\phi(g)$ and show that this is well-defined. Show […]