# Trace of the Inverse Matrix of a Finite Order Matrix

## Problem 46

Let $A$ be an $n\times n$ matrix such that $A^k=I_n$, where $k\in \N$ and $I_n$ is the $n \times n$ identity matrix.

Show that the trace of $(A^{-1})^{\trans}$ is the conjugate of the trace of $A$. That is, show that $\tr((A^{-1})^{\trans})=\overline{\tr(A)}$.

Contents

## Hint.

1. Note that $\tr(B)=\tr(B^{\trans})$ for any square matrix $B$.
2. Use the Jordan canonical form of $A$.
3. Show that eigenvalues are $k$-th roots of unity.

## Proof.

First note that the trace of a matrix is the same as the trace of its transpose. Thus we only have to show $\tr(A^{-1})=\overline{\tr(A)}$.

There is an invertible matrix $P$ such that $P^{-1}AP$ is the Jordan canonical form. That is, $P^{-1}AP=T$, where $T$ is an upper triangular matrix whose diagonal entries are eigenvalues of $A$.

Since $A$ is invertible (to see this take the determinant of $A^k=I_n$), the matrix $T$ is also invertible and $P^{-1}A^{-1}P=T^{-1}$. Then we have
\begin{align*}
\tr(A)&=\tr(P^{-1}AP)=\tr(T)\\
\tr(A^{-1})&=\tr(P^{-1}A^{-1}P)=\tr(T^{-1})
\end{align*}

Now let $\lambda_1, \lambda_2,\dots, \lambda_n$ be eigenvalues of $A$. Then the upper triangular matrix $T$ and its inverse matrix are
$T=\begin{bmatrix} \lambda_1 & * & * & * \\ 0 &\lambda_2 & * & * \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}, \,\, T^{-1}=\begin{bmatrix} \lambda_1^{-1} & * & * & * \\ 0 &\lambda_2^{-1} & * & * \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n^{-1} \end{bmatrix}$

Thus we have
\begin{align*}
\tr(A)&=\lambda_1+\lambda_2+\cdots + \lambda_n \\
\tr(A^{-1})&=\lambda_1^{-1}+\lambda_2^{-1}+\cdots +\lambda_n^{-1} \end{align*}

Next, we show that $\lambda_i^{-1}=\overline{\lambda_i}$ for $i=1,2,\dots, n$.
This follows from the fact that if $A^k=I_n$ then the eigenvalues are $k$-th roots of unity.

Assuming this, we have $1=|\lambda_i|=\overline{\lambda_i}\lambda_i$, hence $\lambda_i^{-1}=\overline{\lambda_i}$.

To prove the fact, let $\lambda$ be an eigenvalue of $A$ and let $x$ be an eigenvector corresponding to $\lambda$.

Then we have $Ax=\lambda x$. Using this relation successively we have
\begin{align*}
x&=I_nx=A^kx=\lambda A^{k-1}x=\lambda^2 A^{k-2}x =\cdots=\lambda^kx
\end{align*}
Since $x$ is a nonzero vector, we have $\lambda^k=1$, and $\lambda$ is a $k$-th root of unity.

Now we have
\begin{align*}
\tr(A^{-1})&= \lambda_1^{-1}+\lambda_2^{-1}+\cdots +\lambda_n^{-1} \\
&= \overline{\lambda_1}+\overline{\lambda_2}+\cdots +\overline{\lambda_n}\\
&=\overline{ \lambda_1+\lambda_2+\cdots +\lambda_n} \\
&=\overline{\tr(A)}.
\end{align*}

This completes the proof.

### Analogous Problem.

See also Finite order matrix and its trace for a similar problem.

### More from my site

• Finite Order Matrix and its Trace Let $A$ be an $n\times n$ matrix and suppose that $A^r=I_n$ for some positive integer $r$. Then show that (a) $|\tr(A)|\leq n$. (b) If $|\tr(A)|=n$, then $A=\zeta I_n$ for an $r$-th root of unity $\zeta$. (c) $\tr(A)=n$ if and only if $A=I_n$. Proof. (a) […]
• If Every Trace of a Power of a Matrix is Zero, then the Matrix is Nilpotent Let $A$ be an $n \times n$ matrix such that $\tr(A^n)=0$ for all $n \in \N$. Then prove that $A$ is a nilpotent matrix. Namely there exist a positive integer $m$ such that $A^m$ is the zero matrix. Steps. Use the Jordan canonical form of the matrix $A$. We want […]
• Stochastic Matrix (Markov Matrix) and its Eigenvalues and Eigenvectors (a) Let $A=\begin{bmatrix} a_{11} & a_{12}\\ a_{21}& a_{22} \end{bmatrix}$ be a matrix such that $a_{11}+a_{12}=1$ and $a_{21}+a_{22}=1$. Namely, the sum of the entries in each row is $1$. (Such a matrix is called (right) stochastic matrix (also termed […]
• Matrices Satisfying $HF-FH=-2F$ Let $F$ and $H$ be an $n\times n$ matrices satisfying the relation $HF-FH=-2F.$ (a) Find the trace of the matrix $F$. (b) Let $\lambda$ be an eigenvalue of $H$ and let $\mathbf{v}$ be an eigenvector corresponding to $\lambda$. Show that there exists an positive integer $N$ […]
• Determinant of a General Circulant Matrix Let $A=\begin{bmatrix} a_0 & a_1 & \dots & a_{n-2} &a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-3} & a_{n-2} \\ a_{n-2} & a_{n-1} & \dots & a_{n-4} & a_{n-3} \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{2} & a_3 & \dots & a_{0} & a_{1}\\ a_{1} & a_2 & […] • Transpose of a Matrix and Eigenvalues and Related Questions Let A be an n \times n real matrix. Prove the followings. (a) The matrix AA^{\trans} is a symmetric matrix. (b) The set of eigenvalues of A and the set of eigenvalues of A^{\trans} are equal. (c) The matrix AA^{\trans} is non-negative definite. (An n\times n […] • Diagonalizable Matrix with Eigenvalue 1, -1 Suppose that A is a diagonalizable n\times n matrix and has only 1 and -1 as eigenvalues. Show that A^2=I_n, where I_n is the n\times n identity matrix. (Stanford University Linear Algebra Exam) See below for a generalized problem. Hint. Diagonalize the […] • Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible. Let \[A=\begin{bmatrix} 1 & 3 & 3 \\ -3 &-5 &-3 \\ 3 & 3 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 4 & 3 \\ -4 &-6 &-3 \\ 3 & 3 & 1 \end{bmatrix}.$ For this problem, you may use the fact that both matrices have the same characteristic […]

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Calculate Determinants of Matrices

Calculate the determinants of the following $n\times n$ matrices. \[A=\begin{bmatrix} 1 & 0 & 0 & \dots & 0 &...

Close