Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible.

Stanford University Linear Algebra Exam Problems and Solutions

Problem 216

Let
\[A=\begin{bmatrix}
1 & 3 & 3 \\
-3 &-5 &-3 \\
3 & 3 & 1
\end{bmatrix} \text{ and } B=\begin{bmatrix}
2 & 4 & 3 \\
-4 &-6 &-3 \\
3 & 3 & 1
\end{bmatrix}.\] For this problem, you may use the fact that both matrices have the same characteristic polynomial:
\[p_A(\lambda)=p_B(\lambda)=-(\lambda-1)(\lambda+2)^2.\]

(a) Find all eigenvectors of $A$.

(b) Find all eigenvectors of $B$.

(c) Which matrix $A$ or $B$ is diagonalizable?

(d) Diagonalize the matrix stated in (c), i.e., find an invertible matrix $P$ and a diagonal matrix $D$ such that $A=PDP^{-1}$ or $B=PDP^{-1}$.

(Stanford University Linear Algebra Final Exam Problem)
 
LoadingAdd to solve later

Sponsored Links

Hint.

See the post how to diagonalize a matrix for a review of the diagonalization process.

Solution.

(a) All eigenvectors of $A$

The eigenvalues of $A$ are roots of the characteristic polynomial $p_A(\lambda)$, hence the eigenvalues of $A$ are
\[\lambda=1, -2\] with algebraic multiplicities $1$ and $2$, respectively.

Let us first find the eigenvectors corresponding to the eigenvalue $\lambda=-2$.
The eigenvectors are nonzero solutions of the equation
\[(A+2I)\mathbf{x}=\mathbf{0},\] where $I$ is the $3\times 3$ identity matrix, $\mathbf{x}\in \R^3$, and $\mathbf{0}$ is the three dimensional zero vector.

To solve the linear system, we use the Gauss-Jordan elimination method.
Applying elementary row operations we obtain
\begin{align*}
A+2I=\begin{bmatrix}
3 & 3 & 3 \\
-3 &-3 &-3 \\
3 & 3 & 3
\end{bmatrix} \to \cdots \to \begin{bmatrix}
1 & 1 & 1 \\
0 &0 &0 \\
0 & 0 & 0
\end{bmatrix}.
\end{align*}
Therefore, the vector $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$ must satisfy
\[x_1=-x_2-x_3.\] Hence the eigenvectors associated to $\lambda=-2$ are
\[\mathbf{x}=\begin{bmatrix}
-x_2-x_3 \\
x_2 \\
x_3
\end{bmatrix}=x_2\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}+x_3\begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}\] for any pair of complex numbers $(x_1, x_2)\neq (0,0)$.


Now we find the eigenvectors corresponding to the eigenvalue $\lambda=1$.
As above, we solve the system
\[(A-I)\mathbf{x}=\mathbf{0}.\] By elementary row operations, we reduce the matrix $A-I$ and obtain
\[A-I=\begin{bmatrix}
0 & 3 & 3 \\
-3 &-6 &-3 \\
3 & 3 & 0
\end{bmatrix} \to \cdots \to \begin{bmatrix}
1 & 0 & -1 \\
0 &1 &1 \\
0 & 0 & 0
\end{bmatrix}.\] Hence the vector $\mathbf{x}$ should satisfy
\[x_1=x_3 \text{ and } x_2=-x_3.\] Thus the eigenvectors associated to $\lambda=1$ are
\[\mathbf{x}=x_3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}\] for any nonzero complex number $x_3$.

(b) All eigenvectors of $B$

The eigenvalues of $B$ are roots of the characteristic polynomial $p_B(t)$, hence the eigenvalues of $B$ are
\[\lambda=1, -2\] with algebraic multiplicities $1$ and $2$, respectively.


Let us first find the eigenvectors corresponding to the eigenvalue $\lambda=-2$.
We need to solve the sysetm
\[(B+2I)\mathbf{x}=\mathbf{0}.\] By elementary row operations, we have
\begin{align*}
B+2I=\begin{bmatrix}
4 & 4 & 3 \\
-4 &-4 &-3 \\
3 & 3 & 3
\end{bmatrix} \to \cdots \to \begin{bmatrix}
1 & 1 & 0 \\
0 &0 &1 \\
0 & 0 & 0
\end{bmatrix}.
\end{align*}
Thus the vector $\mathbf{x}$ satisfies
\[x_1=-x_2 \text{ and } x_3=0,\] hence the eigenvectors associated to $\lambda=-2$ are
\[\mathbf{x}=x_2\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}\] for any nonzero complex number $x_2$


Next, we find the eigenvectors corresponding to eigenvalue $\lambda=1$.
Since we have
\begin{align*}
B-I=\begin{bmatrix}
1 & 4 & 3 \\
-4 &-7 &-3 \\
3 & 3 & 0
\end{bmatrix}
\to \cdots \to
\begin{bmatrix}
1 & 0 & -1 \\
0 &1 &1 \\
0 & 0 & 0
\end{bmatrix}
\end{align*}
by elementary row operations, the system $(B-I)\mathbf{x}=\mathbf{0}$ has solutions
\[x_1=x_3 \text{ and } x_2=-x_3.\] Thus the eigenvectors associated to $\lambda=1$ are
\[\mathbf{x}=x_3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}\] for any nonzero complex number $x_3$.

(c) Which matrix $A$ or $B$ is diagonalizable?

From the result of (a), for each eigenvalue $\lambda$ of $A$ the geometric multiplicity of $\lambda$ is the same as the algebraic multiplicity of $\lambda$. Thus $A$ is not defective, and hence $A$ is diagonalizable.

From the result of (b), the geometric multiplicity of the eigenvalue $\lambda=-2$ of $B$ is $1$ although the algebraic multiplicity of $\lambda=-2$ is $2$. Thus the matrix $B$ is defective and hence $B$ is not diagonalizable.

(d) Diagonalize the matrix

We diagonalize the matrix $A$. From the computation of (a), the vectors
\[\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}\] form a basis of the eigenspace $E_{-2}$ associated to $\lambda=-2$.
Also the vector
\[\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}\] form a basis of the eigenspace $E_1$ associated to $\lambda=1$.
Therefore the vectors
\[\begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}, \begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}\] are linearly independent eigenvectors of $A$.
Thus we set
\[P=\begin{bmatrix}
-1 & -1 & 1 \\
1 &0 &-1 \\
0 & 1 & 1
\end{bmatrix} \text{ and } D=\begin{bmatrix}
-2 & 0 & 0 \\
0 &-2 &0 \\
0 & 0 & 1
\end{bmatrix}\] and we have
\[P^{-1}AP=D.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

1 Response

  1. 12/11/2016

    […] Two matrices with the same characteristic polynomial. Diagonalize if possible. […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Find the Inverse Matrix of a Matrix With Fractions

Find the inverse matrix of the matrix \[A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7}...

Close