Vector Form for the General Solution of a System of Linear Equations

Problems and solutions in Linear Algebra

Problem 267

Solve the following system of linear equations by transforming its augmented matrix to reduced echelon form (Gauss-Jordan elimination).

Find the vector form for the general solution.
\begin{align*}
x_1-x_3-3x_5&=1\\
3x_1+x_2-x_3+x_4-9x_5&=3\\
x_1-x_3+x_4-2x_5&=1.
\end{align*}

 
LoadingAdd to solve later

Sponsored Links

Solution.

The augmented matrix of the given system is
\begin{align*}
\left[\begin{array}{rrrrr|r}
1 & 0 & -1 & 0 &-3 & 1 \\
3 & 1 & -1 & 1 & -9 & 3 \\
1 & 0 & -1 & 1 & -2 & 1 \\
\end{array} \right].
\end{align*}
We apply the elementary row operations as follows.
We have
\begin{align*}
\left[\begin{array}{rrrrr|r}
1 & 0 & -1 & 0 &-3 & 1 \\
3 & 1 & -1 & 1 & -9 & 3 \\
1 & 0 & -1 & 1 & -2 & 1 \\
\end{array} \right] \xrightarrow{\substack{R_2-3R_1\\R_3-R_1}}
\left[\begin{array}{rrrrr|r}
1 & 0 & -1 & 0 &-3 & 1 \\
0 & 1 & 2 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
\end{array} \right]\\[10pt] \xrightarrow{R_2-R_3}
\left[\begin{array}{rrrrr|r}
1 & 0 & -1 & 0 &-3 & 1 \\
0 & 1 & 2 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
\end{array} \right].
\end{align*}
The last matrix is in reduced row echelon form.
From this reduction, we see that the general solution is
\begin{align*}
x_1&=x_3+3x_5+1\\
x_2&=-2x_3+x_5\\
x_4&=-x_5.
\end{align*}
Here $x_3, x_5$ are free (independent) variables and $x_1, x_2, x_4$ are dependent variables.

To find the vector form for the general solution, we substitute these equations into the vector $\mathbf{x}$ as follows.
We have
\begin{align*}
\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5
\end{bmatrix}&=
\begin{bmatrix}
x_3+3x_5+1 \\
-2x_3+x_5 \\
x_3 \\
-x_5 \\
x_5
\end{bmatrix}\\[10pt] &=
\begin{bmatrix}
x_3 \\
-2x_3 \\
x_3 \\
0 \\
0
\end{bmatrix}
+
\begin{bmatrix}
3x_5 \\
x_5 \\
0 \\
-x_5 \\
x_5
\end{bmatrix}
+
\begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}\\[10pt] &=x_3\begin{bmatrix}
1 \\
-2 \\
1 \\
0 \\
0
\end{bmatrix}+x_5 \begin{bmatrix}
3 \\
1 \\
0 \\
-1 \\
1
\end{bmatrix}+\begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}.
\end{align*}
Therefore the vector form for the general solution is given by
\[\mathbf{x}=x_3\begin{bmatrix}
1 \\
-2 \\
1 \\
0 \\
0
\end{bmatrix}+x_5 \begin{bmatrix}
3 \\
1 \\
0 \\
-1 \\
1
\end{bmatrix}+\begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
0
\end{bmatrix},\] where $x_3, x_5$ are free variables.

Related Question.

For a similar question, check out the post ↴
Solve the System of Linear Equations and Give the Vector Form for the General Solution.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Invertible Matrix Satisfying a Quadratic Polynomial

Let $A$ be an $n \times n$ matrix satisfying \[A^2+c_1A+c_0I=O,\] where $c_0, c_1$ are scalars, $I$ is the $n\times n$...

Close