Metaplectic modular categories and the associated TQFT

Yilong Wang

The Ohio State University
wang.3003@osu.edu

Nov 17, 2016

Overview

(1) MTC, TQFT and MCG rep: general construction

- Modular tensor categories: definition and conventions
- TQFT and the spaces V_{g}
- The mapping class group representation ρ_{g}
(2) Metaplectic modular cateogeries
- Definition of MMC
- Example: $\mathrm{SO}(m)_{2}$
(3) Computation of the representation
- Method: Graphical Calculus
- Result
(4) Properties of the representation
- Eigenvalues
- Integrality
- Finiteness

MTC, TQFT and MCG rep: general construction
Metaplectic modular cateogeries Computation of the representation Properties of the representation

Modular tensor categories: definition and conventions TQFT and the spaces V_{g}
The mapping class group representation ρg

Modular tensor categories: definition and conventions

Modular tensor category (MTC):

Modular tensor categories: definition and conventions

Modular tensor category (MTC): Abelian, \mathbb{C}-linear, semisimple (finitely many isomorphism classes of simple objects), monoidal (unit being simple), braided, pivotal(compatible with braiding), S-matrix invertible.

Modular tensor categories: definition and conventions

Modular tensor category (MTC): Abelian, \mathbb{C}-linear, semisimple (finitely many isomorphism classes of simple objects), monoidal (unit being simple), braided, pivotal(compatible with braiding), S-matrix invertible.

Notations:
$\mathcal{I}=$ the set of representatives of isomorphism classes (with a special object $\underline{1}$ representing the unit),
$d_{i}=$ quantum dimension of the object $i \in \mathcal{I}$,
$D^{2}=\sum_{i \in \mathcal{I}} d_{i}^{2}$.

Modular tensor categories: definition and conventions

The S-matrix is defined to be an $|\mathcal{I}| \times|\mathcal{I}|$-complex matrix whose (i, j)-th entry is given by:

TQFT and the spaces V_{g}

3-dimensional TQFT: a tensor functor $\mathcal{V}: \operatorname{Cob}^{3} \rightarrow \operatorname{Vec}_{\mathbb{C}}$. Given any MTC, there exists a TQFT.

TQFT and the spaces V_{g}

3-dimensional TQFT: a tensor functor $\mathcal{V}: \operatorname{Cob}^{3} \rightarrow \operatorname{Vec}_{\mathbb{C}}$. Given any MTC, there exists a TQFT. In particular, to each oriented closed surface Σ_{g} of genus g, we denote the associated vector space by V_{g}.

TQFT and the spaces V_{g}

3-dimensional TQFT: a tensor functor $\mathcal{V}: \operatorname{Cob}^{3} \rightarrow \operatorname{Vec}_{\mathbb{C}}$. Given any MTC, there exists a TQFT. In particular, to each oriented closed surface Σ_{g} of genus g, we denote the associated vector space by V_{g}.
$\forall \vec{i}=\left(i_{1}, \ldots, i_{g}\right) \in \mathcal{I}^{g}$, let

$$
\begin{equation*}
V_{g}^{\vec{i}}:=\operatorname{Hom}\left(\underline{1}, i_{1} \otimes i_{1}^{*} \otimes \cdots \otimes i_{g} \otimes i_{g}^{*}\right) \tag{2}
\end{equation*}
$$

TQFT and the spaces V_{g}

3-dimensional TQFT: a tensor functor $\mathcal{V}: \operatorname{Cob}^{3} \rightarrow \operatorname{Vec}_{\mathbb{C}}$. Given any MTC, there exists a TQFT. In particular, to each oriented closed surface Σ_{g} of genus g, we denote the associated vector space by V_{g}.
$\forall \vec{i}=\left(i_{1}, \ldots, i_{g}\right) \in \mathcal{I}^{g}$, let

$$
\begin{equation*}
V_{g}^{\vec{i}}:=\operatorname{Hom}\left(\underline{1}, i_{1} \otimes i_{1}^{*} \otimes \cdots \otimes i_{g} \otimes i_{g}^{*}\right) \tag{2}
\end{equation*}
$$

then V_{g} is given by

$$
\begin{equation*}
V_{g}:=\bigoplus_{\vec{i} \in \mathcal{I} g} V_{g}^{\vec{i}} \tag{3}
\end{equation*}
$$

summing over all possible g-tuples of simple objects.

TQFT and the spaces V_{g}

Assume $\forall i, j, k \in \mathcal{I}$ admissible, $\operatorname{Hom}(i, j \otimes k) \cong \mathbb{C}$. For each such Hom-set, we choose a generator and represent it by a graph:

TQFT and the spaces V_{g}

Assume $\forall i, j, k \in \mathcal{I}$ admissible, $\operatorname{Hom}(i, j \otimes k) \cong \mathbb{C}$. For each such Hom-set, we choose a generator and represent it by a graph:

Then by definition, for $\vec{i}=\left(i_{1}, \ldots, i_{g}\right)$, the space $V_{g}^{\vec{i}}$ is spanned by the tree basis vectors

TQFT and the spaces V_{g}

where $\forall k \in\{1, \ldots, 2 g-1\}, a_{k} \in \mathcal{I}$, and a_{k} can be obtained by fusing the vertical i-object on its right hand side and a_{k+1}.

MTC, TQFT and MCG rep: general construction

The mapping class group representation ρ_{g}

Let Γ_{g} be the mapping class group of Σ_{g}. By definition, given an MTC, the associated TQFT provides projective representation of Γ_{g} on the space V_{g} :

The mapping class group representation ρ_{g}

Let Γ_{g} be the mapping class group of Σ_{g}. By definition, given an MTC, the associated TQFT provides projective representation of Γ_{g} on the space V_{g} :

$$
\begin{equation*}
\rho_{g}: \Gamma_{g} \rightarrow \operatorname{End}\left(V_{g}\right) \tag{6}
\end{equation*}
$$

The mapping class group representation ρ_{g}

Let Γ_{g} be the mapping class group of Σ_{g}. By definition, given an MTC, the associated TQFT provides projective representation of Γ_{g} on the space V_{g} :

$$
\begin{equation*}
\rho_{g}: \Gamma_{g} \rightarrow \operatorname{End}\left(V_{g}\right) \tag{6}
\end{equation*}
$$

More explicitly, given a homeomorphism f in Γ_{g}, the matrix entry $\rho_{g}(f)_{T, T^{\prime}}$ correponding to the tree basis vectors $T \in V_{g}^{\vec{i}}$ and $T^{\prime} \in V_{g}^{\vec{i}}$ can be computed as follows:

- find a tangle presentation of f, denoted by $\operatorname{Tg} I(f)$ (via surgery theory);

The mapping class group representation ρ_{g}

Let Γ_{g} be the mapping class group of Σ_{g}. By definition, given an MTC, the associated TQFT provides projective representation of Γ_{g} on the space V_{g} :

$$
\begin{equation*}
\rho_{g}: \Gamma_{g} \rightarrow \operatorname{End}\left(V_{g}\right) \tag{6}
\end{equation*}
$$

More explicitly, given a homeomorphism f in Γ_{g}, the matrix entry $\rho_{g}(f)_{T, T^{\prime}}$ correponding to the tree basis vectors $T \in V_{g}^{\vec{i}}$ and $T^{\prime} \in V_{g}^{i^{\prime}}$ can be computed as follows:

- find a tangle presentation of f, denoted by $T g /(f)$ (via surgery theory);
- extend the coloring of T to the bottom strands of $T g I(f)$, and T^{\prime} to the top strands of $T g l(f)$;

The mapping class group representation ρ_{g}

- for each coloring λ of the internal components of $\operatorname{Tg} /(f)$, we get a morphism $\operatorname{Tg} /(f)_{\lambda}$ in the MTC, let d_{λ} be the product of the quantum dimensions of the colorings in λ;

The mapping class group representation ρ_{g}

- for each coloring λ of the internal components of $\operatorname{Tg} /(f)$, we get a morphism $\operatorname{Tg} /(f)_{\lambda}$ in the MTC, let d_{λ} be the product of the quantum dimensions of the colorings in λ;
- Finally, evaluate the following diagram using graphical calculus, we get the desired matrix entry:

The mapping class group representation ρ_{g}

Let A_{p}, B_{p}, C_{p} be the right-handed Dehn twists along the p-th α-, β - and waist curves, the maps $\left\{T_{p}, S_{p}\right\}_{p=1, \ldots g} \cup\left\{D_{q}\right\}_{q=1, \ldots, g-1}$ generate Γ_{g}, where

The mapping class group representation ρ_{g}

Let A_{p}, B_{p}, C_{p} be the right-handed Dehn twists along the p-th α-, β - and waist curves, the maps $\left\{T_{p}, S_{p}\right\}_{p=1, \ldots g} \cup\left\{D_{q}\right\}_{q=1, \ldots, g-1}$ generate Γ_{g}, where

$$
\begin{equation*}
T_{p}:=A_{p}, \quad S_{p}:=A_{p} B_{p} A_{p}, \quad D_{q}:=A_{q}^{-1} A_{q+1}^{-1} C_{q} . \tag{8}
\end{equation*}
$$

The mapping class group representation ρ_{g}

Let A_{p}, B_{p}, C_{p} be the right-handed Dehn twists along the p-th α-, β - and waist curves, the maps $\left\{T_{p}, S_{p}\right\}_{p=1, \ldots g} \cup\left\{D_{q}\right\}_{q=1, \ldots, g-1}$ generate Γ_{g}, where

$$
\begin{equation*}
T_{p}:=A_{p}, \quad S_{p}:=A_{p} B_{p} A_{p}, \quad D_{q}:=A_{q}^{-1} A_{q+1}^{-1} C_{q} . \tag{8}
\end{equation*}
$$

To compute ρ_{g}, it suffices to compute ρ_{g} on the above generators.

The mapping class group representation ρ_{g}

Let A_{p}, B_{p}, C_{p} be the right-handed Dehn twists along the p-th α-, β - and waist curves, the maps $\left\{T_{p}, S_{p}\right\}_{p=1, \ldots g} \cup\left\{D_{q}\right\}_{q=1, \ldots, g-1}$ generate Γ_{g}, where

$$
\begin{equation*}
T_{p}:=A_{p}, \quad S_{p}:=A_{p} B_{p} A_{p}, \quad D_{q}:=A_{q}^{-1} A_{q+1}^{-1} C_{q} . \tag{8}
\end{equation*}
$$

To compute ρ_{g}, it suffices to compute ρ_{g} on the above generators. The tangle presentations of the generators are given as follows (by definition, we just have to look locally at the p-th or $(p+1)$-th position):

MTC, TQFT and MCG rep: general construction

Modular tensor categories: definition and conventions TQFT and the spaces V_{g}
The mapping class group representation ρ_{g}

The mapping class group representation ρ_{g}

Modular tensor categories: definition and conventions TQFT and the spaces V_{g}
The mapping class group representation ρ_{g}

The mapping class group representation ρ_{g}

$$
\begin{equation*}
T_{p}=\frac{i_{p}}{i_{p}} \tag{9}
\end{equation*}
$$

Modular tensor categories: definition and conventions TQFT and the spaces V_{g}
The mapping class group representation ρ_{g}

The mapping class group representation ρ_{g}

and

Definition of MMC

Definition. A metaplectic modular category of rank $(r+4)$ is a unitary modular category with $\mathcal{I}=\left\{\underline{1}, Z, Y_{j}, 1 \leq j \leq r, X, X^{\prime}\right\}$ and the following fusion rules: let $m=2 r+1$,

Definition of MMC

Definition. A metaplectic modular category of rank $(r+4)$ is a unitary modular category with $\mathcal{I}=\left\{\underline{1}, Z, Y_{j}, 1 \leq j \leq r, X, X^{\prime}\right\}$ and the following fusion rules: let $m=2 r+1$,

$$
\begin{align*}
& X \otimes X \cong 1 \oplus \bigoplus_{j=1}^{r} Y_{j} \\
& X \otimes Y_{j} \cong X \oplus X^{\prime}, 1 \leq j \leq r \\
& X \otimes X^{\prime} \cong \underline{1} \oplus Z \oplus \bigoplus_{j=1}^{r} Y_{j} \\
& Z \otimes X \cong X^{\prime} \\
& Z \otimes Z \cong \underline{I}^{\prime} \cong \\
& Z \otimes Y_{j} \cong Y_{j}, 1 \leq j \leq r \\
& Y_{j} \otimes Y_{j} \cong \underline{1} \oplus Z \oplus Y_{\min \{2 j, m-2 j\}}, 1 \leq j \leq r \\
& Y_{i} \otimes Y_{j} \cong Y_{|i-j|} \oplus Y_{\min \{i+j, m-i-j\}}, 1 \leq i, j \leq r, i \neq j \tag{12}
\end{align*}
$$

Example: $\mathrm{SO}(m)_{2}$

Let $m=2 r+1$, and $\mathfrak{g}=\mathfrak{s o}(m)$, the representation theory of the quantum $\operatorname{group} \mathrm{U}_{q}(\mathfrak{g})$ at $q=e^{\pi i / 2 m}$ gives rise to an MMC with the following S-matrix:

$$
S=\left(\begin{array}{ccccc}
\frac{1}{2 \sqrt{m}} & \frac{1}{2 \sqrt{m}} & \frac{1}{\sqrt{m}} & \frac{1}{2} & \frac{1}{2} \tag{13}\\
\frac{1}{2 \sqrt{m}} & \frac{1}{2 \sqrt{m}} & \frac{1}{\sqrt{m}} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{\sqrt{m}} & \frac{1}{\sqrt{m}} & H & 0 & 0 \\
\frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

where H is understood as an $r \times r$-matrix with entries $H_{i, j}=2 \cos (2 \pi i j / m) / \sqrt{m}$. We will call them the $\mathrm{SO}(m)_{2}$-theory.

Example: $\mathrm{SO}(m)_{2}$

Goal: calulate ρ_{g} for $\mathrm{SO}(m)_{2}$ and discover interesting properties. Mainly focus on $\mathrm{SO}(5)_{2}$. Below is some data of the theory.

Example: $\mathrm{SO}(m)_{2}$

Goal: calulate ρ_{g} for $\mathrm{SO}(m)_{2}$ and discover interesting properties. Mainly focus on $\mathrm{SO}(5)_{2}$. Below is some data of the theory. Some topological twists:

$$
\begin{equation*}
\theta_{Z}=1, \theta_{X}=e^{\pi \mathrm{i} / 4}, \theta_{Y_{j}}=e^{\frac{\pi \mathrm{ij}(m-j)}{m}}, 1 \leq j \leq r \tag{14}
\end{equation*}
$$

Example: $\mathrm{SO}(m)_{2}$

Goal: calulate ρ_{g} for $\mathrm{SO}(m)_{2}$ and discover interesting properties. Mainly focus on $\mathrm{SO}(5)_{2}$. Below is some data of the theory. Some topological twists:

$$
\begin{equation*}
\theta_{Z}=1, \theta_{X}=e^{\pi \mathrm{i} / 4}, \theta_{Y_{j}}=e^{\frac{\pi \mathrm{ij}(m-j)}{m}}, 1 \leq j \leq r \tag{14}
\end{equation*}
$$

some braidings (R-matrices):

$$
\begin{equation*}
R_{\underline{1}}^{Y_{1}, Y_{1}}=e^{\frac{\pi \mathrm{i}(m-1)}{m}}, R_{Z}^{Y_{1}, Y_{1}}=e^{\frac{-\pi \mathrm{i}}{m}}, \tag{15}
\end{equation*}
$$

an example of F-matrix:

$$
F_{X}^{Y_{1} Y_{1} X}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \tag{16}\\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

Method: Graphical Calculus

By the guideline provided before, we need rules to perform graphical calculus, some of which are listed here, the colorings are all simple objects:

where $\delta_{c, c^{\prime}}$ is the Kronecker delta function, and $\theta(a, b, c)=\sqrt{d_{a} d_{b} d_{c}}$.

Method: Graphical Calculus

where R is the R-matrix.

Method: Graphical Calculus

where R is the R-matrix.

Result

Theorem (W.)

Applying graphical calculus and the given data of $\mathrm{SO}(5)_{2}$-theory, we completely determined ρ_{g} for every genus g.

Result

Theorem (W.)

Applying graphical calculus and the given data of $\mathrm{SO}(5)_{2}$-theory, we completely determined ρ_{g} for every genus g.

However, as the dimensions of V_{g} are very large, it is impossible to present all the results here. Therefore, we give the result for $g=1$ and some observations and partial results on higher genus.

Method: Graphical Calculus Result

Result

Result

Example. Note that when $g=1, \Gamma_{g}$ is generated by two elements S_{1} and T_{1}, and that associated to the $\operatorname{SO}(5)_{2}$-theory, $\operatorname{dim} V_{1}=6$. The representation $\rho_{1}: \Gamma_{1} \rightarrow \operatorname{End}\left(V_{1}\right)$ associated to the $\mathrm{SO}(5)_{2}$-theory is given by:

Result

Example. Note that when $g=1, \Gamma_{g}$ is generated by two elements S_{1} and T_{1}, and that associated to the $\operatorname{SO}(5)_{2}$-theory, $\operatorname{dim} V_{1}=6$. The representation $\rho_{1}: \Gamma_{1} \rightarrow \operatorname{End}\left(V_{1}\right)$ associated to the $\mathrm{SO}(5)_{2}$-theory is given by:

$$
\rho_{1}\left(S_{1}\right)=\left(\begin{array}{cccccc}
\frac{1}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & -\frac{1}{2} & -\frac{1}{2} \tag{20}\\
\frac{1}{2 \sqrt{5}} & \frac{1}{2 \sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{-1+\sqrt{5}}{2 \sqrt{5}} & \frac{-1-\sqrt{5}}{2 \sqrt{5}} & 0 & 0 \\
\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{-1-\sqrt{5}}{2 \sqrt{5}} & \frac{-1+\sqrt{5}}{2 \sqrt{5}} & 0 & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

and

$$
\begin{equation*}
\rho_{1}\left(T_{1}\right)=\operatorname{diag}\left(1,1, e^{\frac{-4 \pi \mathrm{i}}{5}}, e^{\frac{4 \pi \mathrm{i}}{5}},-\mathrm{i}, \mathrm{i}\right) . \tag{21}
\end{equation*}
$$

Result

In higher genus cases, a key observation is that the generators S, T, D only act locally. More precisely, S_{l} and T_{l} fixes subspaces of $V_{g}^{\vec{i}} \subset V_{g}$ in the form of

Result

In higher genus cases, a key observation is that the generators
S, T, D only act locally. More precisely, S_{l} and T_{l} fixes subspaces of $V_{g}^{\vec{i}} \subset V_{g}$ in the form of

$$
\begin{equation*}
U_{a, b}^{\vec{i}, l}:=\operatorname{span}\left\{a \frac{1}{e} b: e \text { admissible }\right\}, \tag{22}
\end{equation*}
$$

and D_{l} preserves subspaces in the form of

$$
\begin{equation*}
W_{a, b, p, r}^{\vec{i}, l}:=\operatorname{span}\left\{a \frac{\left.\stackrel{L}{l}_{i_{1}}^{i_{1}}\right|_{p} ^{i_{l+1} i_{l+1}}}{p} b: q \text { admissible }\right\} . \tag{23}
\end{equation*}
$$

Result

Note that fixing the super- and subscripts of U and W, there may be several configurations on the other edges, yielding more than one subspaces. But the actions are identical. So we just have to fix one.

Result

Note that fixing the super- and subscripts of U and W, there may be several configurations on the other edges, yielding more than one subspaces. But the actions are identical. So we just have to fix one.
Hence it suffices to determine the actions of the generators of Γ_{g} on these subspaces and then write out the representation in diagonal block matrix form.

Result

Note that fixing the super- and subscripts of U and W, there may be several configurations on the other edges, yielding more than one subspaces. But the actions are identical. So we just have to fix one.
Hence it suffices to determine the actions of the generators of Γ_{g} on these subspaces and then write out the representation in diagonal block matrix form.
Here we give an example of the action of D_{2} on one of the subspaces $W=W_{Z, Z, Y_{1}, Y_{2}}^{\left(Z, Y_{1}, Y_{2}, Z\right), 2}$ of V_{4} :

$$
\rho_{4}\left(D_{2}\right) \left\lvert\, W=\left(\begin{array}{cc}
\frac{1}{2} e^{\pi \mathrm{i} / 5}\left(-1+e^{3 \pi \mathrm{i} / 5}\right) & -\frac{1}{2} e^{\pi \mathrm{i} / 5}\left(1+e^{3 \pi \mathrm{i} / 5}\right) \tag{24}\\
-\frac{1}{2} e^{\mathrm{i} / 5}\left(1+e^{3 \pi \mathrm{i} / 5}\right) & \frac{1}{2} e^{\mathrm{i} / 5}\left(-1+e^{3 \mathrm{i} / 5}\right)
\end{array}\right) .\right.
$$

Eigenvalues

A direct computation confirms a more general argument on the eigenvalues of ρ_{g} associated to classical quantums groups at roots of unity (although I haven't seen it written down explicity in the literature):

Eigenvalues

A direct computation confirms a more general argument on the eigenvalues of ρ_{g} associated to classical quantums groups at roots of unity (although I haven't seen it written down explicity in the literature):

Corollary (W.)

The eigenvalues of $\rho_{g}\left(S_{p}\right), \rho_{g}\left(T_{p}\right), \rho_{g}\left(D_{P}\right)$ associated to $\mathrm{SO}(5)_{2}$ are 20-th roots of unity for all p.

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ.

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ. Furthermore, Gilmer-Masbaum-van Wamelen proved that the $S O(3)-T Q F T$ (different from the SO in our case) can be defined over $\mathbb{Z}[\zeta, \mathrm{i}]$.

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ. Furthermore, Gilmer-Masbaum-van Wamelen proved that the $S O(3)$-TQFT (different from the SO in our case) can be defined over $\mathbb{Z}[\zeta, i]$.
Question: can we define our $\operatorname{SO}(m)_{2}$-TQFT over some ring of cyclotomic integers? Or, can we at least make some changes of bases so that image of ρ_{g} is over cyclotomic integers?

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ. Furthermore, Gilmer-Masbaum-van Wamelen proved that the $S O(3)-T Q F T$ (different from the SO in our case) can be defined over $\mathbb{Z}[\zeta, i]$.
Question: can we define our $\operatorname{SO}(m)_{2}$-TQFT over some ring of cyclotomic integers? Or, can we at least make some changes of bases so that image of ρ_{g} is over cyclotomic integers?
At first, we found out by direct computation that:

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ. Furthermore, Gilmer-Masbaum-van Wamelen proved that the $S O(3)-T Q F T$ (different from the SO in our case) can be defined over $\mathbb{Z}[\zeta, i]$.
Question: can we define our $\mathrm{SO}(m)_{2}$-TQFT over some ring of cyclotomic integers? Or, can we at least make some changes of bases so that image of ρ_{g} is over cyclotomic integers?
At first, we found out by direct computation that:

Theorem (Kerler, W.)

Under a change of basis, the images of $\rho_{1}\left(S_{1}\right)$ and $\rho_{1}\left(T_{1}\right)$ has entries in $\mathbb{Z}[\zeta]$ where $\zeta=e^{\frac{\pi i}{5}}$ is a 10 -th root of unity.

Integrality

Later, some more examples are examined using a more systematic treatment (the change of bases matrices are Vandermonde matrices):

Integrality

Later, some more examples are examined using a more systematic treatment (the change of bases matrices are Vandermonde matrices):

Theorem (W.)

For $m=7,11,19, \rho_{1}$ associated to $\mathrm{SO}(m)_{2}$ can be defined over $\mathbb{Z}\left[\zeta_{m}, i\right]$, and for $m=13,17$, the corresponding ρ_{1} can be defined over $\mathbb{Z}\left[\zeta_{m}\right]$, where $\zeta_{m}=e^{2 \pi \mathrm{i} / m}$.

Integrality

Later, some more examples are examined using a more systematic treatment (the change of bases matrices are Vandermonde matrices):

Theorem (W.)

For $m=7,11,19, \rho_{1}$ associated to $\mathrm{SO}(m)_{2}$ can be defined over $\mathbb{Z}\left[\zeta_{m}, i\right]$, and for $m=13,17$, the corresponding ρ_{1} can be defined over $\mathbb{Z}\left[\zeta_{m}\right]$, where $\zeta_{m}=e^{2 \pi \mathrm{i} / m}$.

And we are optimistic to propose the following conjecture:

Integrality

Conjecture (W.)

Let m be an odd prime. The ρ_{1} associated to $\mathrm{SO}(m)_{2}$ can be defined over \mathcal{O}, where

$$
\mathcal{O}= \begin{cases}\mathbb{Z}\left[\zeta_{m}, i\right], & \text { if } m \equiv 3(\bmod 4) \tag{25}\\ \mathbb{Z}\left[\zeta_{m}\right], & \text { if } m \equiv 1(\bmod 4)\end{cases}
$$

Finiteness

Another interesting aspect of ρ_{g} is the finiteness of the its image.

Finiteness

Another interesting aspect of ρ_{g} is the finiteness of the its image. It is shown by Ng-Schauenburg that for any modular category, ρ_{1} has finite image, and it is shown by Funar that for $g \geq 2, \rho_{g}$ associated to the $S U(2)-T Q F T$ has infinite image, in particular, there is an infinite order element coming from the braid group reprentation.

Finiteness

Another interesting aspect of ρ_{g} is the finiteness of the its image. It is shown by Ng -Schauenburg that for any modular category, ρ_{1} has finite image, and it is shown by Funar that for $g \geq 2, \rho_{g}$ associated to the $S U(2)-T Q F T$ has infinite image, in particular, there is an infinite order element coming from the braid group reprentation. Interestingly enough, it is shown by Rowell-Wenzl that the braid group representation associated to $\mathrm{SO}(\mathrm{m})_{2}$ has finite image, does it make ρ_{g} finite for $g \geq 2$?

Finiteness

Another interesting aspect of ρ_{g} is the finiteness of the its image. It is shown by Ng -Schauenburg that for any modular category, ρ_{1} has finite image, and it is shown by Funar that for $g \geq 2, \rho_{g}$ associated to the $S U(2)$-TQFT has infinite image, in particular, there is an infinite order element coming from the braid group reprentation. Interestingly enough, it is shown by Rowell-Wenzl that the braid group representation associated to $S O(m)_{2}$ has finite image, does it make ρ_{g} finite for $g \geq 2$?
Even with the computation I made for $S O(5)_{2}$, I can hardly tell...

Finiteness

Another interesting aspect of ρ_{g} is the finiteness of the its image. It is shown by Ng -Schauenburg that for any modular category, ρ_{1} has finite image, and it is shown by Funar that for $g \geq 2, \rho_{g}$ associated to the $S U(2)$-TQFT has infinite image, in particular, there is an infinite order element coming from the braid group reprentation. Interestingly enough, it is shown by Rowell-Wenzl that the braid group representation associated to $S O(m)_{2}$ has finite image, does it make ρ_{g} finite for $g \geq 2$?
Even with the computation I made for $S O(5)_{2}$, I can hardly tell... If you have any suggestions on how to attack this problem, we can work together!

Thank You!

