Metaplectic modular categories and the associated $$\mathsf{TQFT}$$

Yilong Wang

The Ohio State University

wang.3003@osu.edu

Nov 17, 2016

Overview

- MTC, TQFT and MCG rep: general construction
 - Modular tensor categories: definition and conventions
 - TQFT and the spaces V_g
 - The mapping class group representation $\rho_{\rm g}$
- 2 Metaplectic modular cateogeries
 - Definition of MMC
 - Example: SO(m)₂
- 3 Computation of the representation
 - Method: Graphical Calculus
 - Result
- Properties of the representation
 - Eigenvalues
 - Integrality
 - Finiteness

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

< ∃ →

Modular tensor categories: definition and conventions

Modular tensor category (MTC):

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

Modular tensor categories: definition and conventions

Modular tensor category (MTC): Abelian, \mathbb{C} -linear, semisimple (finitely many isomorphism classes of simple objects), monoidal (unit being simple), braided, pivotal(compatible with braiding), *S*-matrix invertible.

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

Modular tensor categories: definition and conventions

Modular tensor category (MTC): Abelian, \mathbb{C} -linear, semisimple (finitely many isomorphism classes of simple objects), monoidal (unit being simple), braided, pivotal(compatible with braiding), *S*-matrix invertible.

Notations:

 \mathcal{I} = the set of representatives of isomorphism classes (with a special object $\underline{1}$ representing the unit),

 d_i = quantum dimension of the object $i \in \mathcal{I}$,

$$D^2 = \sum_{i\in\mathcal{I}} d_i^2.$$

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

→

Modular tensor categories: definition and conventions

The S-matrix is defined to be an $|\mathcal{I}| \times |\mathcal{I}|$ -complex matrix whose (i, j)-th entry is given by:

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

TQFT and the spaces V_g

3-dimensional TQFT: a tensor functor $\mathcal{V}: Cob^3 \rightarrow Vec_{\mathbb{C}}$. Given any MTC, there exists a TQFT.

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

TQFT and the spaces V_g

3-dimensional TQFT: a tensor functor $\mathcal{V}: Cob^3 \rightarrow Vec_{\mathbb{C}}$. Given any MTC, there exists a TQFT. In particular, to each oriented closed surface Σ_g of genus g, we denote the associated vector space by V_g .

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

TQFT and the spaces V_g

3-dimensional TQFT: a tensor functor $\mathcal{V}: Cob^3 \rightarrow Vec_{\mathbb{C}}$. Given any MTC, there exists a TQFT. In particular, to each oriented closed surface Σ_g of genus g, we denote the associated vector space by V_g . $\forall \vec{i} = (i_1, ..., i_g) \in \mathcal{I}^g$, let

$$V_{g}^{i} := \operatorname{Hom}(\underline{1}, \ i_{1} \otimes i_{1}^{*} \otimes \cdots \otimes i_{g} \otimes i_{g}^{*}),$$

$$(2)$$

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

TQFT and the spaces V_g

3-dimensional TQFT: a tensor functor $\mathcal{V}: Cob^3 \rightarrow Vec_{\mathbb{C}}$. Given any MTC, there exists a TQFT. In particular, to each oriented closed surface Σ_g of genus g, we denote the associated vector space by V_g . $\forall \vec{i} = (i_1, ..., i_g) \in \mathcal{I}^g$, let

$$V_{g}^{i} := \operatorname{Hom}(\underline{1}, \ i_{1} \otimes i_{1}^{*} \otimes \cdots \otimes i_{g} \otimes i_{g}^{*}),$$
(2)

then V_g is given by

$$V_g := \bigoplus_{\vec{i} \in \mathcal{I}^g} V_g^{\vec{i}}$$
(3)

summing over all possible g-tuples of simple objects.

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

(日) (同) (三) (

TQFT and the spaces V_g

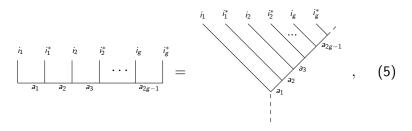
Assume $\forall i, j, k \in \mathcal{I}$ admissible, $\operatorname{Hom}(i, j \otimes k) \cong \mathbb{C}$. For each such Hom-set, we choose a generator and represent it by a graph:

(4)

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

TQFT and the spaces V_g

Assume $\forall i, j, k \in \mathcal{I}$ admissible, $\operatorname{Hom}(i, j \otimes k) \cong \mathbb{C}$. For each such Hom-set, we choose a generator and represent it by a graph:



(日) (同) (三) (

Then by definition, for $\vec{i} = (i_1, ..., i_g)$, the space $V_g^{\vec{i}}$ is spanned by the tree basis vectors

Metaplectic modular cateogeries Computation of the representation Properties of the representation Modular tensor categories: definition and conventions TQFT and the spaces V_g . The mapping class group representation ρ_g

TQFT and the spaces V_g

where $\forall k \in \{1, ..., 2g - 1\}, a_k \in \mathcal{I}$, and a_k can be obtained by fusing the vertical *i*-object on its right hand side and a_{k+1} .

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation $\rho_{\rm g}$

・ロト ・ 同ト ・ ヨト ・

The mapping class group representation ρ_g

Let Γ_g be the mapping class group of Σ_g . By definition, given an MTC, the associated TQFT provides projective representation of Γ_g on the space V_g :

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

・ロト ・ 同ト ・ ヨト ・

The mapping class group representation ρ_g

Let Γ_g be the mapping class group of Σ_g . By definition, given an MTC, the associated TQFT provides projective representation of Γ_g on the space V_g :

$$\rho_g: \Gamma_g \to \operatorname{End}(V_g). \tag{6}$$

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

イロト イ得ト イヨト イヨト

The mapping class group representation ρ_g

Let Γ_g be the mapping class group of Σ_g . By definition, given an MTC, the associated TQFT provides projective representation of Γ_g on the space V_g :

$$\rho_g: \Gamma_g \to \operatorname{End}(V_g). \tag{6}$$

More explicitly, given a homeomorphism f in Γ_g , the matrix entry $\rho_g(f)_{T,T'}$ correponding to the tree basis vectors $T \in V_g^{\vec{i}}$ and $T' \in V_g^{\vec{j}'}$ can be computed as follows:

find a tangle presentation of f, denoted by Tgl(f) (via surgery theory);

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation $\rho_{\rm g}$

(日) (同) (三) (

The mapping class group representation ρ_g

Let Γ_g be the mapping class group of Σ_g . By definition, given an MTC, the associated TQFT provides projective representation of Γ_g on the space V_g :

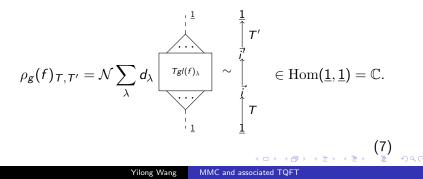
$$\rho_g: \Gamma_g \to \operatorname{End}(V_g). \tag{6}$$

More explicitly, given a homeomorphism f in Γ_g , the matrix entry $\rho_g(f)_{\mathcal{T},\mathcal{T}'}$ correponding to the tree basis vectors $\mathcal{T} \in V_g^{\vec{i}}$ and $\mathcal{T}' \in V_g^{\vec{j}'}$ can be computed as follows:

- find a tangle presentation of f, denoted by Tgl(f) (via surgery theory);
- extend the coloring of T to the bottom strands of Tgl(f), and T' to the top strands of Tgl(f);

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

・ロト ・ 同ト ・ ヨト ・


The mapping class group representation ρ_g

for each coloring λ of the internal components of Tgl(f), we get a morphism Tgl(f)_λ in the MTC, let d_λ be the product of the quantum dimensions of the colorings in λ;

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

The mapping class group representation ρ_g

- for each coloring λ of the internal components of Tgl(f), we get a morphism Tgl(f)_λ in the MTC, let d_λ be the product of the quantum dimensions of the colorings in λ;
- Finally, evaluate the following diagram using graphical calculus, we get the desired matrix entry:

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

(日) (同) (三) (

The mapping class group representation ρ_g

Let A_p , B_p , C_p be the right-handed Dehn twists along the *p*-th α -, β - and waist curves, the maps $\{T_p, S_p\}_{p=1,...g} \cup \{D_q\}_{q=1,...,g-1}$ generate Γ_g , where

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

(日) (同) (三) (

The mapping class group representation ρ_g

Let A_p , B_p , C_p be the right-handed Dehn twists along the *p*-th α -, β - and waist curves, the maps $\{T_p, S_p\}_{p=1,...g} \cup \{D_q\}_{q=1,...,g-1}$ generate Γ_g , where

$$T_p := A_p, \quad S_p := A_p B_p A_p, \quad D_q := A_q^{-1} A_{q+1}^{-1} C_q.$$
 (8)

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

(日) (同) (三) (

The mapping class group representation ρ_g

Let A_p , B_p , C_p be the right-handed Dehn twists along the *p*-th α -, β - and waist curves, the maps $\{T_p, S_p\}_{p=1,...g} \cup \{D_q\}_{q=1,...,g-1}$ generate Γ_g , where

$$T_p := A_p, \quad S_p := A_p B_p A_p, \quad D_q := A_q^{-1} A_{q+1}^{-1} C_q.$$
 (8)

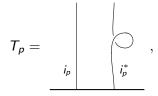
To compute ρ_g , it suffices to compute ρ_g on the above generators.

Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

(日) (同) (三) (

The mapping class group representation ρ_g

Let A_p , B_p , C_p be the right-handed Dehn twists along the *p*-th α -, β - and waist curves, the maps $\{T_p, S_p\}_{p=1,...g} \cup \{D_q\}_{q=1,...,g-1}$ generate Γ_g , where

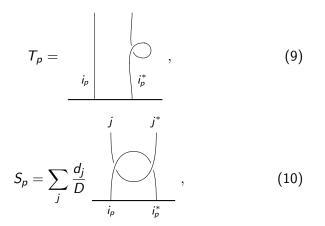

$$T_{p} := A_{p}, \quad S_{p} := A_{p}B_{p}A_{p}, \quad D_{q} := A_{q}^{-1}A_{q+1}^{-1}C_{q}.$$
(8)

To compute ρ_g , it suffices to compute ρ_g on the above generators. The tangle presentations of the generators are given as follows (by definition, we just have to look locally at the *p*-th or (p + 1)-th position):

Metaplectic modular cateogeries Computation of the representation Properties of the representation Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

▲ 同 ▶ ▲ 国 ▶ ▲

The mapping class group representation ρ_g

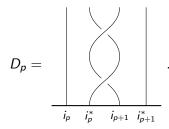

(9)

Metaplectic modular cateogeries Computation of the representation Properties of the representation Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

・ 同 ト ・ 三 ト ・

э

The mapping class group representation ρ_g


Metaplectic modular cateogeries Computation of the representation Properties of the representation Modular tensor categories: definition and conventions TQFT and the spaces V_g The mapping class group representation ρ_g

・ 同 ト ・ 三 ト ・

э

The mapping class group representation ρ_g

and

Definition of MMC Example: $SO(m)_2$

Definition of MMC

Definition. A metaplectic modular category of rank (r + 4) is a unitary modular category with $\mathcal{I} = \{\underline{1}, Z, Y_j, 1 \le j \le r, X, X'\}$ and the following fusion rules: let m = 2r + 1,

(日) (同) (三) (

Definition of MMC Example: $SO(m)_2$

Definition of MMC

Definition. A metaplectic modular category of rank (r + 4) is a unitary modular category with $\mathcal{I} = \{\underline{1}, Z, Y_j, 1 \le j \le r, X, X'\}$ and the following fusion rules: let m = 2r + 1,

$$\begin{array}{rcl} X \otimes X &\cong & \underline{1} \oplus \bigoplus_{j=1}^{r} Y_{j} \\ X \otimes Y_{j} &\cong & X \oplus X', \ 1 \leq j \leq r \\ X \otimes X' &\cong & \underline{1} \oplus Z \oplus \bigoplus_{j=1}^{r} Y_{j} \\ Z \otimes X &\cong & X' \\ Z \otimes Z &\cong & \underline{1} \\ Z \otimes Y_{j} &\cong & Y_{j}, \ 1 \leq j \leq r \\ Y_{j} \otimes Y_{j} &\cong & \underline{1} \oplus Z \oplus Y_{\min\{2j,m-2j\}}, \ 1 \leq j \leq r \\ Y_{i} \otimes Y_{j} &\cong & Y_{|i-j|} \oplus Y_{\min\{i+j,m-i-j\}}, \ 1 \leq i, \ j \leq r, \ i \neq j. \end{array}$$

$$(12)$$

Definition of MMC Example: $SO(m)_2$

Example: $SO(m)_2$

Let m = 2r + 1, and $\mathfrak{g} = \mathfrak{so}(m)$, the representation theory of the quantum group $U_q(\mathfrak{g})$ at $q = e^{\pi i/2m}$ gives rise to an MMC with the following *S*-matrix:

$$S = \begin{pmatrix} \frac{1}{2\sqrt{m}} & \frac{1}{2\sqrt{m}} & \frac{1}{\sqrt{m}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2\sqrt{m}} & \frac{1}{2\sqrt{m}} & \frac{1}{\sqrt{m}} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{m}} & \frac{1}{\sqrt{m}} & H & 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
(13)

where *H* is understood as an $r \times r$ -matrix with entries $H_{i,j} = 2\cos(2\pi i j/m)/\sqrt{m}$. We will call them the SO(*m*)₂-theory.

Example: $SO(m)_2$

Definition of MMC Example: $SO(m)_2$

Goal: calulate ρ_g for SO(m)₂ and discover interesting properties. Mainly focus on SO(5)₂. Below is some data of the theory.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition of MMC Example: $SO(m)_2$

Example: $SO(m)_{2}$

Goal: calulate ρ_g for SO(m)₂ and discover interesting properties. Mainly focus on SO(5)₂. Below is some data of the theory. Some topological twists:

$$\theta_{Z} = 1, \ \theta_{X} = e^{\pi i/4}, \ \theta_{Y_{j}} = e^{\frac{\pi i j(m-j)}{m}}, \ 1 \le j \le r;$$
 (14)

Definition of MMC Example: $SO(m)_2$

Example: $SO(m)_2$

Goal: calulate ρ_g for SO(m)₂ and discover interesting properties. Mainly focus on SO(5)₂. Below is some data of the theory. Some topological twists:

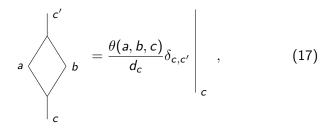
$$\theta_Z = 1, \ \theta_X = e^{\pi i/4}, \ \theta_{Y_j} = e^{\frac{\pi i j(m-j)}{m}}, \ 1 \le j \le r;$$
 (14)

some braidings (*R*-matrices):

$$R_{\underline{1}}^{Y_1,Y_1} = e^{\frac{\pi i(m-1)}{m}}, \ R_Z^{Y_1,Y_1} = e^{\frac{-\pi i}{m}}, \tag{15}$$

an example of F-matrix:

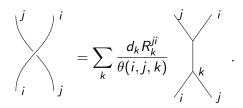
$$F_X^{Y_1Y_1X} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$
(16)


<**∂** ► < **≥** ►

Yilong Wang MMC and associated TQFT

Method: Graphical Calculus Result

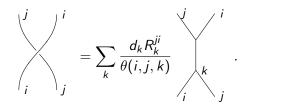
Method: Graphical Calculus


By the guideline provided before, we need rules to perform graphical calculus, some of which are listed here, the colorings are all simple objects:

where $\delta_{c,c'}$ is the Kronecker delta function, and $\theta(a, b, c) = \sqrt{d_a d_b d_c}$.

Method: Graphical Calculus Result

Method: Graphical Calculus



(18)

where R is the R-matrix.

Method: Graphical Calculus Result

Method: Graphical Calculus

where R is the R-matrix.

(18)

Method: Graphical Calculus Result

Result

Theorem (W.)

Applying graphical calculus and the given data of $SO(5)_2$ -theory, we completely determined ρ_g for every genus g.

(日) (同) (三) (

Method: Graphical Calculus Result

Result

Theorem (W.)

Applying graphical calculus and the given data of $SO(5)_2$ -theory, we completely determined ρ_g for every genus g.

However, as the dimensions of V_g are very large, it is impossible to present all the results here. Therefore, we give the result for g = 1 and some observations and partial results on higher genus.

(日)

Method: Graphical Calculus Result

Result

			Help		
	(-1) 3/10 2 (5-√ 5		$ \begin{array}{c} \mathfrak{s}_{1,2} \\ \end{array} \left[\begin{array}{c} \mathfrak{s} \ \mathfrak{s} \ \left(\ \mathfrak{s} \ \mathfrak{s} \ \mathfrak{s} \ \right) \\ \mathfrak{s} \ \left(\ \mathfrak{s} \ \mathfrak{s} \ \mathfrak{s} \ \right) \\ \mathfrak{s} \ \mathfrak{s} \ \mathfrak{s} \ \mathfrak{s} \ \mathfrak{s} \ \mathfrak{s} \end{array} \right] \\ \end{array} \right] $	(-1) ^{1/5} \[\sqrt{10-2\sqrt{5}} -\sqrt{5} \] \[-4 i+\sqrt{10-2\sqrt{5}} \]	
		16 \sqrt{5}	16 \sqrt{5}	16 \sqrt{5}	16
	(-1) 4/5 (-10		$1)^{3/10}$ $\left[i\sqrt{10-2\sqrt{5}}, \sqrt{5} \left[4-i\sqrt{10-2\sqrt{5}}\right]\right]$	$(-1)^{1/5}$ 2 i $(5+\sqrt{5}) + \sqrt{2(5+\sqrt{5})} - \sqrt{10(5+\sqrt{5})}$	$(-1)^{1/5} \left[-2i \left(5 + \sqrt{5} \right) - \sqrt{1} \right]$
(16 \sqrt{5}	16 √ 5	16 √ 5	16
($\frac{1}{2\sqrt{5}} = -\frac{1}{2\sqrt{5}}$	1	1 √10	$\frac{1}{\sqrt{20}}$	1 1
	$\frac{1}{2\sqrt{5}}$ $\frac{1}{2\sqrt{5}}$	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{10}}$	$-\frac{1}{\sqrt{10}}$
	$\frac{1}{\sqrt{10}}$ - $\frac{1}{\sqrt{10}}$	$\frac{(-1)^{2/5} - (-1)^{3/5}}{2\sqrt{5}}$	$\frac{(-1)^{2/5} - (-1)^{3/5}}{2\sqrt{5}}$	$\frac{(-1)^{1/5} \left(-1 + (-1)^{3/5}\right)}{2 \sqrt{5}}$	$\frac{(-1)^{1/5}(-1+(-1)^{3/2}}{2\sqrt{5}}$
	$\frac{1}{\sqrt{10}} = -\frac{1}{\sqrt{10}}$	$\frac{(-1)^{2/5} - (-1)^{3/5}}{2\sqrt{5}}$	$\frac{(-1)^{2/5}-(-1)^{3/5}}{2\sqrt{5}}$	$\frac{(-1)^{1/5}(-1+(-1)^{3/5})}{2\sqrt{5}}$	$\frac{(-1)^{1/5} (-1+(-1)^{3/2}}{2\sqrt{5}}$
	$\frac{1}{\sqrt{10}}$ - $\frac{1}{\sqrt{10}}$	$\frac{(-1)^{1/5} \left(-1 + (-1)^{3/5}\right)}{2 \sqrt{5}}$	$\frac{(\cdot 1)^{1/5} \left(\cdot 1 \cdot (\cdot 1)^{3/5}\right)}{2 \sqrt{5}}$	$\frac{\frac{(-1)^{2/5}-(-1)^{3/5}}{2\sqrt{5}}$	$\frac{(-1)^{2/5} - (-1)^{3/5}}{2\sqrt{5}}$
	$\frac{1}{\sqrt{10}}$ = $\frac{1}{\sqrt{10}}$	$\frac{(-1)^{1/5} \left(-1 + (-1)^{3/5}\right)}{2 \sqrt{5}}$	$\frac{(-1)^{1/5} \left(-1 + (-1)^{3/5}\right)}{2 \sqrt{5}}$	$\frac{(-1)^{2/5} - (-1)^{3/5}}{2\sqrt{5}}$	$\frac{(-1)^{2/5} - (-1)^{3/5}}{2\sqrt{5}}$
SopMat(6,6) =	$\frac{1}{2\sqrt{5}} = \frac{1}{2\sqrt{5}}$	$=\frac{(-1)^{\frac{4}{5}}\left[\sqrt{2}\left(-1\sqrt{5}\right)+2i\sqrt{5}\sqrt{5}\right]}{8\sqrt{5}}$	$\frac{(-1)^{\frac{3}{2}/10} \left[-i\sqrt{2} \left(-1\sqrt{5}\right)+2\sqrt{5}\sqrt{5}\right]}{8\sqrt{5}}$	$\frac{(-1)^{1/5} \left[\sqrt{2} \ -\sqrt{10} \ +2 \ i \ \sqrt{5} \ -\sqrt{5} \ \right]}{8 \ \sqrt{5}}$	$= \frac{ \left(^{-1} \right)^{1/5} \left[\sqrt{2} \left(^{-1*\sqrt{5}} \right) ^{-2i} \right. }{ 8\sqrt{5} }$
	$\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$	$=\frac{(-1)^{-\frac{4}{5}}\left(-1+\sqrt{5}^{-}\right)\left[-1+\sqrt{5}^{-}+i\sqrt{2\left(5+\sqrt{5}^{-}+1\right)^{-}}\right]}{16\sqrt{5}}$	$\frac{(-1)^{\frac{d}{5}}\left(-1,\sqrt{5}\right)\left[-1,\sqrt{5}+k\sqrt{2(5,\sqrt{5})}\right]}{16\sqrt{5}}$	$\frac{(-1)^{7/10} \left[4 i \sqrt{2 \left(5 \sqrt{5} \right)} \sqrt{10 \left(5 \sqrt{5} \right)} \right]}{16 \sqrt{5}}$	$=\frac{(-1)^{1/5} \left(1{*}\sqrt{5}\right) \left(-1{*}\sqrt{5}{*}{*}\sqrt{5}\right)}{16 \sqrt{5}}$
	$\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$	$=\frac{(-1)^{4/5} (1 \cdot \sqrt{5}) \left(-1 \cdot \sqrt{5} \cdot i \sqrt{2 (5 \cdot \sqrt{5})} \right)}{16 \sqrt{5}}$	$\frac{(-1)^{3/10} \left[-4 i * \sqrt{2 (5 * \sqrt{5})} * \sqrt{10 (5 * \sqrt{5})} \right]}{16 \sqrt{5}}$	$\frac{(-1)^{1/5}(-1+\sqrt{5})(-1+\sqrt{5}-i\sqrt{2(5+\sqrt{5})})}{16\sqrt{5}}$	$-\frac{(-1)^{1/5}(-1\sqrt{5})(-1\sqrt{5})}{16\sqrt{5}}$
	$\frac{1}{2\sqrt{5}}$ $\frac{1}{2\sqrt{5}}$	$=\frac{(-1)^{-3/10} \left[-i \sqrt{2} \left(-1 \sqrt{5}\right) + 2 \sqrt{5 \sqrt{5}} - i \sqrt{5} + $	$\frac{(-1)^{4/5} \left[\sqrt{2} \left(-1 + \sqrt{5}\right) + 2 \pm \sqrt{5 + \sqrt{5}}\right]}{8 \sqrt{5}}$	$\frac{(-1)^{1/5} \left[\sqrt{2} \left(-1 * \sqrt{5}\right) - 2 i \sqrt{5} * \sqrt{5}\right)}{8 \sqrt{5}}$	(-1) ^{1/5} <u>0</u> - 1 1 1 1 -
	$\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$	$=\frac{(-1)^{4/5}(-1+\sqrt{5})\left[-1+\sqrt{5}+1\sqrt{2(5+\sqrt{5})}\right]}{16\sqrt{5}}$	$\frac{(-1)^{4/5}(-1\sqrt{5})(-1\sqrt{5}\sqrt{2}\sqrt{2}\sqrt{5}\sqrt{5})}{16\sqrt{5}}$	$\frac{(-1)^{7/10} \left[4 i \sqrt{2 \left(5 + \sqrt{5}\right)} + \sqrt{10 \left(5 + \sqrt{5}\right)}\right]}{16 \sqrt{5}}$	$\frac{(-1)^{1/5} \left(1 \sqrt{5}\right) \left(-1 \sqrt{5} - i \sqrt{5} - i$
	, ,	$(-1)^{4/5}(1+\sqrt{5}) \left[-1+\sqrt{5}+1\sqrt{2(5+\sqrt{5})}\right]$		$\left -(-1)^{1/5} \left(-1 * \sqrt{5} \right) \left(-1 * \sqrt{5} - i \sqrt{2 \left(5 * \sqrt{5} \right)} \right) \right $	$(-1)^{1/5} \left(-1*\sqrt{5}\right) \left(-1*\sqrt{5}\right) \cdot i_{\gamma}$
					1

<ロ> (日) (日) (日) (日) (日)

æ

Method: Graphical Calculus Result

Result

Example. Note that when g = 1, Γ_g is generated by two elements S_1 and T_1 , and that associated to the SO(5)₂-theory, dim $V_1 = 6$. The representation $\rho_1 : \Gamma_1 \to \text{End}(V_1)$ associated to the SO(5)₂-theory is given by:

(日) (同) (三) (

Method: Graphical Calculus Result

Result

Example. Note that when g = 1, Γ_g is generated by two elements S_1 and T_1 , and that associated to the SO(5)₂-theory, dim $V_1 = 6$. The representation $\rho_1 : \Gamma_1 \to \text{End}(V_1)$ associated to the SO(5)₂-theory is given by:

$$\rho_{1}(S_{1}) = \begin{pmatrix}
\frac{1}{2\sqrt{5}} & \frac{1}{2\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & -\frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2\sqrt{5}} & \frac{1}{2\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{-1+\sqrt{5}}{2\sqrt{5}} & \frac{1-\sqrt{5}}{2\sqrt{5}} & 0 & 0 \\
\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{-1-\sqrt{5}}{2\sqrt{5}} & \frac{-1+\sqrt{5}}{2\sqrt{5}} & 0 & 0 \\
\frac{-\frac{1}{2}}{\sqrt{5}} & \frac{1}{2} & 0 & 0 & \frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2} & 0 & 0 & -\frac{1}{2} & \frac{1}{2}
\end{pmatrix}, \quad (20)$$

and

$$\rho_1(T_1) = diag(1, 1, e^{\frac{-4\pi i}{5}}, e^{\frac{4\pi i}{5}}, -i, i).$$
(21)

MMC and associated TQFT

Method: Graphical Calculus Result

Result

In higher genus cases, a key observation is that the generators S, T, D only act locally. More precisely, S_I and T_I fixes subspaces of $V_g^{\vec{i}} \subset V_g$ in the form of

(日) (同) (三) (

Method: Graphical Calculus Result

Result

In higher genus cases, a key observation is that the generators S, T, D only act locally. More precisely, S_I and T_I fixes subspaces of $V_g^{\vec{i}} \subset V_g$ in the form of

$$U_{a,b}^{\vec{i},l} := \operatorname{span}\{ a \xrightarrow{| \qquad | \qquad | \qquad |}_{e} b : e \operatorname{admissible}\}, \qquad (22)$$

and D_l preserves subspaces in the form of

$$W_{a,b,p,r}^{\vec{i},l} := \operatorname{span}\{ a \xrightarrow{\begin{array}{c|c} i_l & i_l & i_{l+1} & i_{l+1} \\ \hline p & q & r \end{array}} b : q \text{ admissible}\}.$$
(23)

(日) (同) (三) (

Method: Graphical Calculus Result

Result

Note that fixing the super- and subscripts of U and W, there may be several configurations on the other edges, yielding more than one subspaces. But the actions are identical. So we just have to fix one.

< **₽** ► < **₽** ►

Method: Graphical Calculus Result

Result

Note that fixing the super- and subscripts of U and W, there may be several configurations on the other edges, yielding more than one subspaces. But the actions are identical. So we just have to fix one.

Hence it suffices to determine the actions of the generators of Γ_g on these subspaces and then write out the representation in diagonal block matrix form.

Method: Graphical Calculus Result

Result

Note that fixing the super- and subscripts of U and W, there may be several configurations on the other edges, yielding more than one subspaces. But the actions are identical. So we just have to fix one.

Hence it suffices to determine the actions of the generators of Γ_g on these subspaces and then write out the representation in diagonal block matrix form.

Here we give an example of the action of D_2 on one of the subspaces $W = W_{Z,Z,Y_1,Y_2}^{(Z,Y_1,Y_2,Z),2}$ of V_4 :

$$\rho_{4}(D_{2})|_{W} = \begin{pmatrix} \frac{1}{2}e^{\pi i/5}(-1+e^{3\pi i/5}) & -\frac{1}{2}e^{\pi i/5}(1+e^{3\pi i/5}) \\ -\frac{1}{2}e^{\pi i/5}(1+e^{3\pi i/5}) & \frac{1}{2}e^{\pi i/5}(-1+e^{3\pi i/5}) \end{pmatrix}.$$
(24)

Eigenvalues

Eigenvalues Integrality Finiteness

A direct computation confirms a more general argument on the eigenvalues of ρ_g associated to classical quantums groups at roots of unity (although I haven't seen it written down explicity in the literature):

(日) (同) (三) (

Eigenvalues Integrality Finiteness

Eigenvalues

A direct computation confirms a more general argument on the eigenvalues of ρ_g associated to classical quantums groups at roots of unity (although I haven't seen it written down explicity in the literature):

Corollary (W.)

The eigenvalues of $\rho_g(S_p)$, $\rho_g(T_p)$, $\rho_g(D_P)$ associated to SO(5)₂ are 20-th roots of unity for all p.

・ロト ・ 同ト ・ ヨト ・ ヨト

Eigenvalues Integrality Finiteness

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ .

(日) (同) (三) (

Eigenvalues Integrality Finiteness

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ . Furthermore, Gilmer-Masbaum-van Wamelen proved that the SO(3)-TQFT (different from the SO in our case) can be defined over $\mathbb{Z}[\zeta, i]$.

Eigenvalues Integrality Finiteness

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ . Furthermore, Gilmer-Masbaum-van Wamelen proved that the SO(3)-TQFT (different from the SO in our case) can be defined over $\mathbb{Z}[\zeta, i]$.

Question: can we define our $SO(m)_2$ -TQFT over some ring of cyclotomic integers? Or, can we at least make some changes of bases so that image of ρ_g is over cyclotomic integers?

Eigenvalues Integrality Finiteness

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ . Furthermore, Gilmer-Masbaum-van Wamelen proved that the SO(3)-TQFT (different from the SO in our case) can be defined over $\mathbb{Z}[\zeta, i]$. Question: can we define our $SO(m)_2$ -TQFT over some ring of cyclotomic integers? Or, can we at least make some changes of

bases so that image of $\rho_{\rm g}$ is over cyclotomic integers?

At first, we found out by direct computation that:

Eigenvalues Integrality Finiteness

Integrality

It is long known that for modular categories, TQFT constructions can be made over a cyclotomic field $\mathbb{Q}(\zeta) \subset \mathbb{C}$ for some roots of unity ζ . Furthermore, Gilmer-Masbaum-van Wamelen proved that the *SO*(3)-TQFT (different from the SO in our case) can be defined over $\mathbb{Z}[\zeta, i]$. Question: can we define our SO(*m*)₂-TQFT over some ring of

Question: can we define our SO(m)₂-TQFT over some ring of cyclotomic integers? Or, can we at least make some changes of bases so that image of ρ_g is over cyclotomic integers? At first, we found out by direct computation that:

Theorem (Kerler, W.)

Under a change of basis, the images of $\rho_1(S_1)$ and $\rho_1(T_1)$ has entries in $\mathbb{Z}[\zeta]$ where $\zeta = e^{\frac{\pi i}{5}}$ is a 10-th root of unity.

イロト イポト イヨト イヨト

Eigenvalues Integrality Finiteness

Integrality

Later, some more examples are examined using a more systematic treatment (the change of bases matrices are Vandermonde matrices):

・ロト ・ 同ト ・ ヨト ・ ヨト

Eigenvalues Integrality Finiteness

Integrality

Later, some more examples are examined using a more systematic treatment (the change of bases matrices are Vandermonde matrices):

Theorem (W.)

For m = 7, 11, 19, ρ_1 associated to $SO(m)_2$ can be defined over $\mathbb{Z}[\zeta_m, i]$, and for m = 13, 17, the corresponding ρ_1 can be defined over $\mathbb{Z}[\zeta_m]$, where $\zeta_m = e^{2\pi i/m}$.

イロト イポト イヨト イヨト

Eigenvalues Integrality Finiteness

Integrality

Later, some more examples are examined using a more systematic treatment (the change of bases matrices are Vandermonde matrices):

Theorem (W.)

For m = 7, 11, 19, ρ_1 associated to $SO(m)_2$ can be defined over $\mathbb{Z}[\zeta_m, i]$, and for m = 13, 17, the corresponding ρ_1 can be defined over $\mathbb{Z}[\zeta_m]$, where $\zeta_m = e^{2\pi i/m}$.

And we are optimistic to propose the following conjecture:

イロト イポト イヨト イヨト

Eigenvalues Integrality Finiteness

Integrality

Conjecture (W.)

Let m be an odd prime. The ρ_1 associated to $\mathrm{SO}(m)_2$ can be defined over $\mathcal{O},$ where

$$\mathcal{O} = \begin{cases} \mathbb{Z}[\zeta_m, i], & \text{if } m \equiv 3 \pmod{4} \\ \mathbb{Z}[\zeta_m], & \text{if } m \equiv 1 \pmod{4} \end{cases}.$$
(25)

(日) (同) (三) (

Eigenvalues Integrality Finiteness

Finiteness

Another interesting aspect of ρ_g is the finiteness of the its image.

Image: Image:

< ∃ >

Eigenvalues Integrality Finiteness

Finiteness

Another interesting aspect of ρ_g is the finiteness of the its image. It is shown by Ng-Schauenburg that for any modular category, ρ_1 has finite image, and it is shown by Funar that for $g \ge 2$, ρ_g associated to the SU(2)-TQFT has infinite image, in particular, there is an infinite order element coming from the braid group reprentation.

Eigenvalues Integrality Finiteness

Finiteness

Another interesting aspect of ρ_g is the finiteness of the its image. It is shown by Ng-Schauenburg that for any modular category, ρ_1 has finite image, and it is shown by Funar that for $g \ge 2$, ρ_g associated to the SU(2)-TQFT has infinite image, in particular, there is an infinite order element coming from the braid group reprentation. Interestingly enough, it is shown by Rowell-Wenzl that the braid group representation associated to $SO(m)_2$ has finite image, does it make ρ_g finite for $g \ge 2$?

Eigenvalues Integrality Finiteness

Finiteness

Another interesting aspect of ρ_g is the finiteness of the its image. It is shown by Ng-Schauenburg that for any modular category, ρ_1 has finite image, and it is shown by Funar that for $g \ge 2$, ρ_g associated to the SU(2)-TQFT has infinite image, in particular, there is an infinite order element coming from the braid group reprentation. Interestingly enough, it is shown by Rowell-Wenzl that the braid group representation associated to $SO(m)_2$ has finite image, does it make ρ_g finite for $g \ge 2$? Even with the computation I made for $SO(5)_2$, I can hardly tell...

Eigenvalues Integrality Finiteness

Finiteness

Another interesting aspect of ρ_{g} is the finiteness of the its image. It is shown by Ng-Schauenburg that for any modular category, ρ_1 has finite image, and it is shown by Funar that for $g \ge 2$, ρ_g associated to the SU(2)-TQFT has infinite image, in particular, there is an infinite order element coming from the braid group reprentation. Interestingly enough, it is shown by Rowell-Wenzl that the braid group representation associated to $SO(m)_2$ has finite image, does it make ρ_g finite for $g \geq 2$? Even with the computation I made for $SO(5)_2$, I can hardly tell... If you have any suggestions on how to attack this problem, we can work together!

・ロト ・ 同ト ・ ヨト ・

Eigenvalues Integrality Finiteness

Thank You!

Yilong Wang MMC and associated TQFT

<ロ> (日) (日) (日) (日) (日)

æ