Are Linear Transformations of Derivatives and Integrations Linearly Independent?
Let $W=C^{\infty}(\R)$ be the vector space of all $C^{\infty}$ real-valued functions (smooth function, differentiable for all degrees of differentiation).
Let $V$ be the vector space of all linear transformations from $W$ to $W$.
The addition and the scalar multiplication of $V$ […]
If a Matrix is the Product of Two Matrices, is it Invertible?
(a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as
\[A=BC,\]
where $B$ is a $6\times 5$ matrix and $C$ is a $5\times 6$ matrix.
Prove that the matrix $A$ cannot be invertible.
(b) Let $A$ be a $2\times 2$ matrix and suppose that $A$ can be […]
Are the Trigonometric Functions $\sin^2(x)$ and $\cos^2(x)$ Linearly Independent?
Let $C[-2\pi, 2\pi]$ be the vector space of all continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the functions \[f(x)=\sin^2(x) \text{ and } g(x)=\cos^2(x)\]
in $C[-2\pi, 2\pi]$.
Prove or disprove that the functions $f(x)$ and $g(x)$ are linearly […]
Idempotent Matrix and its Eigenvalues
Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$.
(a) Find a nonzero, nonidentity idempotent matrix.
(b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$.
(The Ohio State University, Linear Algebra Final Exam […]
The Product of Distinct Sylow $p$-Subgroups Can Never be a Subgroup
Let $G$ a finite group and let $H$ and $K$ be two distinct Sylow $p$-group, where $p$ is a prime number dividing the order $|G|$ of $G$.
Prove that the product $HK$ can never be a subgroup of the group $G$.
Hint.
Use the following fact.
If $H$ and $K$ […]