Let $A$ be an $m \times n$ matrix.
Suppose that the nullspace of $A$ is a plane in $\R^3$ and the range is spanned by a nonzero vector $\mathbf{v}$ in $\R^5$. Determine $m$ and $n$. Also, find the rank and nullity of $A$.

Let $\mathbf{u}=\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}$ and $T:\R^3 \to \R^3$ be the linear transformation
\[T(\mathbf{x})=\proj_{\mathbf{u}}\mathbf{x}=\left(\, \frac{\mathbf{u}\cdot \mathbf{x}}{\mathbf{u}\cdot \mathbf{u}} \,\right)\mathbf{u}.\]

(a) Calculate the null space $\calN(T)$, a basis for $\calN(T)$ and nullity of $T$.

(b) Only by using part (a) and no other calculations, find $\det(A)$, where $A$ is the matrix representation of $T$ with respect to the standard basis of $\R^3$.

(c) Calculate the range $\calR(T)$, a basis for $\calR(T)$ and the rank of $T$.

(d) Calculate the matrix $A$ representing $T$ with respect to the standard basis for $\R^3$.

(e) Let
\[B=\left\{\, \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
-1 \\
1
\end{bmatrix} \,\right\}\]
be a basis for $\R^3$.
Calculate the coordinates of $\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}$ with respect to $B$.

(The Ohio State University, Linear Algebra Exam Problem)

Let $T: \R^2 \to \R^2$ be a linear transformation such that
\[T\left(\, \begin{bmatrix}
1 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
4 \\
1
\end{bmatrix}, T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
3 \\
2
\end{bmatrix}.\]
Then find the matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for every $\mathbf{x}\in \R^2$, and find the rank and nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)

Let $T:\R^3 \to \R^2$ be a linear transformation such that
\[ T(\mathbf{e}_1)=\begin{bmatrix}
1 \\
0
\end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix}
0 \\
1
\end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix}
1 \\
0
\end{bmatrix},\]
where $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are the standard basis of $\R^3$.
Then find the rank and the nullity of $T$.

(The Ohio State University, Linear Algebra Exam Problem)

Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation.
Prove the followings.

(a) The nullity of $T$ is $n-1$. That is, the dimension of the nullspace of $T$ is $n-1$.

(b) Let $B=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}\}$ be a basis of the nullspace $\calN(T)$ of $T$.
Let $\mathbf{w}$ be the $n$-dimensional vector that is not in $\calN(T)$. Then
\[B’=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}, \mathbf{w}\}\]
is a basis of $\R^n$.

(c) Each vector $\mathbf{u}\in \R^n$ can be expressed as
\[\mathbf{u}=\mathbf{v}+\frac{T(\mathbf{u})}{T(\mathbf{w})}\mathbf{w}\]
for some vector $\mathbf{v}\in \calN(T)$.

(a) Let $A=\begin{bmatrix}
1 & 3 & 0 & 0 \\
1 &3 & 1 & 2 \\
1 & 3 & 1 & 2
\end{bmatrix}$.
Find a basis for the range $\calR(A)$ of $A$ that consists of columns of $A$.

(b) Find the rank and nullity of the matrix $A$ in part (a).

Let $V$ be the vector space of all $2\times 2$ real matrices and let $P_3$ be the vector space of all polynomials of degree $3$ or less with real coefficients.
Let $T: P_3 \to V$ be the linear transformation defined by
\[T(a_0+a_1x+a_2x^2+a_3x^3)=\begin{bmatrix}
a_0+a_2 & -a_0+a_3\\
a_1-a_2 & -a_1-a_3
\end{bmatrix}\]
for any polynomial $a_0+a_1x+a_2x^2+a_3 \in P_3$.
Find a basis for the range of $T$, $\calR(T)$, and determine the rank of $T$, $\rk(T)$, and the nullity of $T$, $\nullity(T)$.
Also, prove that $T$ is not injective.