Rank of the Product of Matrices $AB$ is Less than or Equal to the Rank of $A$

Linear algebra problems and solutions

Problem 135

Let $A$ be an $m \times n$ matrix and $B$ be an $n \times l$ matrix. Then prove the followings.

(a) $\rk(AB) \leq \rk(A)$.

(b) If the matrix $B$ is nonsingular, then $\rk(AB)=\rk(A)$.

 
LoadingAdd to solve later

Hint.

The rank of an $m \times n$ matrix $M$ is the dimension of the range $\calR(M)$ of the matrix $M$.
The range of the matrix $M$ is
\[ \calR(M)=\{\mathbf{y} \in \R^m \mid \mathbf{y}=M\mathbf{x} \text{ for some } \mathbf{x} \in \R^n\}.\]

Proof.

(a) $\rk(AB) \leq \rk(A)$.

Recall that the rank of a matrix $M$ is the dimension of the range $\calR(M)$ of the matrix $M$.
So we have
\[\rk(AB)=\dim(\calR(AB)), \quad \rk(A)=\dim(\calR(A)).\]

In general, if a vector space $V$ is a subset of a vector space $W$, then we have
\[\dim(V) \leq \dim(W).\] Thus, it suffices to show that the vector space $\calR(AB)$ is a subset of the vector space $\calR(A)$.

Consider any vector $\mathbf{y} \in \calR(AB)$. Then there exists a vector $\mathbf{x}\in R^{l}$ such that $\mathbf{y}=(AB)\mathbf{x}$ by the definition of the range.
Let $\mathbf{z}=B\mathbf{x} \in \R^n$.

Then we have
\[\mathbf{y}=A(B\mathbf{x})=A\mathbf{z}\] and thus the vector $\mathbf{y}$ is in $\calR(A)$. Thus $\calR(AB)$ is a subset of $\calR(A)$ and we have
\[\rk(AB)=\dim(\calR(AB)) \leq \dim(\calR(A))=\rk(A)\] as required.

(b) If the matrix $B$ is nonsingular, then $\rk(AB)=\rk(A)$.

Since the matrix $B$ is nonsingular, it is invertible. Thus the inverse matrix $B^{-1}$ exists. We apply part (a) with the matrices $AB$ and $B^{-1}$, instead of $A$ and $B$. Then we have
\[\rk((AB)B^{-1}) \leq \rk(AB)\] from (a).

Combining this with the result of (a), we have
\[\rk(A)=\rk((AB)B^{-1}) \leq \rk(AB) \leq \rk(A).\] Therefore all the inequalities are in fact equalities, and hence we have
\[\rk(AB)=\rk(A).\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Subspaces of the Vector Space of All Real Valued Function on the Interval

Let $V$ be the vector space over $\R$ of all real valued functions defined on the interval $[0,1]$. Determine whether...

Close