# Prove a Given Subset is a Subspace and Find a Basis and Dimension ## Problem 270

Let
$A=\begin{bmatrix} 4 & 1\\ 3& 2 \end{bmatrix}$ and consider the following subset $V$ of the 2-dimensional vector space $\R^2$.
$V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.$

(a) Prove that the subset $V$ is a subspace of $\R^2$.

(b) Find a basis for $V$ and determine the dimension of $V$. Add to solve later

## Proof.

### (a) $V$ is a subspace of $\R^2$

Note that the equality $A\mathbf{x}=5\mathbf{x}$ can be written as
$(A-5I)\mathbf{x}=\mathbf{0},$ where $I$ is the $2 \times 2$ matrix.
If we define $B=A-5I$, then the subset $V$ becomes
\begin{align*}
V&=\{\mathbf{x}\in \R^2 \mid B\mathbf{x}=\mathbf{0}\}\\
&=\calN(B),
\end{align*}
the null space of the matrix $B$.
Since any null space is a vector space, this shows that $V$ is a subspace of $\R^2$.

### (b) A basis for $V$ and the dimension of $V$

From part (a), we have obtained that
$V=\calN(B),$ where
$B=A-5I=\begin{bmatrix} -1 & 1\\ 3& -3 \end{bmatrix}.$ Thus, $V$ is a set of solutions of the system $B\mathbf{x}=\mathbf{0}$.

The augmented matrix for this system is reduced as follows.
$\left[\begin{array}{rr|r} -1 & 1 & 0 \\ 3 &-3 &0 \end{array} \right] \xrightarrow{R_2+3R_1} \left[\begin{array}{rr|r} -1 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \xrightarrow{-R_1} \left[\begin{array}{rr|r} 1 & -1 & 0 \\ 0 & 0 & 0 \end{array} \right].$

From this we see that the general solution $\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ satisfies
$x_1=x_2,$ and thus the general solution is
$\mathbf{x}=\begin{bmatrix} x_2 \\ x_2 \end{bmatrix}=x_2\begin{bmatrix} 1 \\ 1 \end{bmatrix}.$

Therefore we have
\begin{align*}
1 \\
1
\end{bmatrix} \text{ for any } x_2 \in \R \right \}\\
&=\Span\left\{ \begin{bmatrix}
1 \\
1
\end{bmatrix} \right \}.
\end{align*}
Thus the set
$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right \}$ is a spanning set of $V$ and it is linearly independent as it consists of only a single vector.
Therefore
$\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right \}$ is a basis for the subspace $V$, and thus the dimension of $V$ is $1$.

(Recall that the dimension of a vector space is the number of vectors in a basis for the vector space.) Add to solve later

### More from my site

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### Eigenvalues of Real Skew-Symmetric Matrix are Zero or Purely Imaginary and the Rank is Even

Let $A$ be a real skew-symmetric matrix, that is, $A^{\trans}=-A$. Then prove the following statements. (a) Each eigenvalue of the...

Close