Probability Problems about Two Dice

Problem 727

Two fair and distinguishable six-sided dice are rolled.

(1) What is the probability that the sum of the upturned faces will equal $5$?

(2) What is the probability that the outcome of the second die is strictly greater than the first die?

Read solution

LoadingAdd to solve later

If the Nullity of a Linear Transformation is Zero, then Linearly Independent Vectors are Mapped to Linearly Independent Vectors

Problem 722

Let $T: \R^n \to \R^m$ be a linear transformation.
Suppose that the nullity of $T$ is zero.

If $\{\mathbf{x}_1, \mathbf{x}_2,\dots, \mathbf{x}_k\}$ is a linearly independent subset of $\R^n$, then show that $\{T(\mathbf{x}_1), T(\mathbf{x}_2), \dots, T(\mathbf{x}_k) \}$ is a linearly independent subset of $\R^m$.

 
Read solution

LoadingAdd to solve later

Compute the Determinant of a Magic Square

Problem 718

Let
\[
A=
\begin{bmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{bmatrix}
.
\] Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic square.

Compute the determinant of $A$.

 
Read solution

LoadingAdd to solve later

Are These Linear Transformations?

Problem 717

Define two functions $T:\R^{2}\to\R^{2}$ and $S:\R^{2}\to\R^{2}$ by
\[
T\left(
\begin{bmatrix}
x \\ y
\end{bmatrix}
\right)
=
\begin{bmatrix}
2x+y \\ 0
\end{bmatrix}
,\;
S\left(
\begin{bmatrix}
x \\ y
\end{bmatrix}
\right)
=
\begin{bmatrix}
x+y \\ xy
\end{bmatrix}
.
\] Determine whether $T$, $S$, and the composite $S\circ T$ are linear transformations.

 
Read solution

LoadingAdd to solve later

Normalize Lengths to Obtain an Orthonormal Basis

Problem 715

Let
\[
\mathbf{v}_{1}
=
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
,\;
\mathbf{v}_{2}
=
\begin{bmatrix}
1 \\ -1
\end{bmatrix}
.
\] Let $V=\Span(\mathbf{v}_{1},\mathbf{v}_{2})$. Do $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ form an orthonormal basis for $V$?

If not, then find an orthonormal basis for $V$.

 
Read solution

LoadingAdd to solve later

Prove Vector Space Properties Using Vector Space Axioms

Problem 711

Using the axiom of a vector space, prove the following properties.
Let $V$ be a vector space over $\R$. Let $u, v, w\in V$.

(a) If $u+v=u+w$, then $v=w$.

(b) If $v+u=w+u$, then $v=w$.

(c) The zero vector $\mathbf{0}$ is unique.

(d) For each $v\in V$, the additive inverse $-v$ is unique.

(e) $0v=\mathbf{0}$ for every $v\in V$, where $0\in\R$ is the zero scalar.

(f) $a\mathbf{0}=\mathbf{0}$ for every scalar $a$.

(g) If $av=\mathbf{0}$, then $a=0$ or $v=\mathbf{0}$.

(h) $(-1)v=-v$.

The first two properties are called the cancellation law.

 
Read solution

LoadingAdd to solve later

Find a Basis for the Subspace spanned by Five Vectors

Problem 709

Let $S=\{\mathbf{v}_{1},\mathbf{v}_{2},\mathbf{v}_{3},\mathbf{v}_{4},\mathbf{v}_{5}\}$ where
\[
\mathbf{v}_{1}=
\begin{bmatrix}
1 \\ 2 \\ 2 \\ -1
\end{bmatrix}
,\;\mathbf{v}_{2}=
\begin{bmatrix}
1 \\ 3 \\ 1 \\ 1
\end{bmatrix}
,\;\mathbf{v}_{3}=
\begin{bmatrix}
1 \\ 5 \\ -1 \\ 5
\end{bmatrix}
,\;\mathbf{v}_{4}=
\begin{bmatrix}
1 \\ 1 \\ 4 \\ -1
\end{bmatrix}
,\;\mathbf{v}_{5}=
\begin{bmatrix}
2 \\ 7 \\ 0 \\ 2
\end{bmatrix}
.\] Find a basis for the span $\Span(S)$.

 
Read solution

LoadingAdd to solve later