Tagged: commutative ring

Ring Homomorphisms and Radical Ideals

Problem 624

Let $R$ and $R’$ be commutative rings and let $f:R\to R’$ be a ring homomorphism.
Let $I$ and $I’$ be ideals of $R$ and $R’$, respectively.

(a) Prove that $f(\sqrt{I}\,) \subset \sqrt{f(I)}$.

(b) Prove that $\sqrt{f^{-1}(I’)}=f^{-1}(\sqrt{I’})$

(c) Suppose that $f$ is surjective and $\ker(f)\subset I$. Then prove that $f(\sqrt{I}\,) =\sqrt{f(I)}$

Read solution

LoadingAdd to solve later

Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator

Problem 432

(a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module.
Prove that the module $M$ has a nonzero annihilator.
In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$.
Here $r$ does not depend on $m$.

(b) Find an example of an integral domain $R$ and a torsion $R$-module $M$ whose annihilator is the zero ideal.

Read solution

LoadingAdd to solve later

Linearly Dependent Module Elements / Module Homomorphism and Linearly Independency

Problem 415

(a) Let $R$ be a commutative ring. If we regard $R$ as a left $R$-module, then prove that any two distinct elements of the module $R$ are linearly dependent.

(b) Let $f: M\to M’$ be a left $R$-module homomorphism. Let $\{x_1, \dots, x_n\}$ be a subset in $M$. Prove that if the set $\{f(x_1), \dots, f(x_n)\}$ is linearly independent, then the set $\{x_1, \dots, x_n\}$ is also linearly independent.
Read solution

LoadingAdd to solve later

Torsion Submodule, Integral Domain, and Zero Divisors

Problem 409

Let $R$ be a ring with $1$. An element of the $R$-module $M$ is called a torsion element if $rm=0$ for some nonzero element $r\in R$.
The set of torsion elements is denoted
\[\Tor(M)=\{m \in M \mid rm=0 \text{ for some nonzero} r\in R\}.\]

(a) Prove that if $R$ is an integral domain, then $\Tor(M)$ is a submodule of $M$.
(Remark: an integral domain is a commutative ring by definition.) In this case the submodule $\Tor(M)$ is called torsion submodule of $M$.

(b) Find an example of a ring $R$ and an $R$-module $M$ such that $\Tor(M)$ is not a submodule.

(c) If $R$ has nonzero zero divisors, then show that every nonzero $R$-module has nonzero torsion element.

Read solution

LoadingAdd to solve later