Ring Homomorphisms and Radical Ideals

Problems and solutions of ring theory in abstract algebra

Problem 624

Let $R$ and $R’$ be commutative rings and let $f:R\to R’$ be a ring homomorphism.
Let $I$ and $I’$ be ideals of $R$ and $R’$, respectively.

(a) Prove that $f(\sqrt{I}\,) \subset \sqrt{f(I)}$.

(b) Prove that $\sqrt{f^{-1}(I’)}=f^{-1}(\sqrt{I’})$

(c) Suppose that $f$ is surjective and $\ker(f)\subset I$. Then prove that $f(\sqrt{I}\,) =\sqrt{f(I)}$

 
LoadingAdd to solve later

Proof.

(a) Prove that $f(\sqrt{I}\,) \subset \sqrt{f(I)}$.

Let $x\in f(\sqrt{I}\,)$ be an arbitrary element. Then there is $a\in \sqrt{I}$ such that $f(a)=x$. As $a\in \sqrt{I}$, there exists a positive integer $n$ such that $a^n\in I$.

It follows that we have
\begin{align*}
x^n=f(a)^n=f(a^n)\in f(I).
\end{align*}

This implies that $x\in \sqrt{f(I)}$.
Hence we have $f(\sqrt{I}\,) \subset \sqrt{f(I)}$.

(b) Prove that $\sqrt{f^{-1}(I’)}=f^{-1}(\sqrt{I’})$

$(\subset)$ Let $x\in \sqrt{f^{-1}(I’)}$. Then there is a positive integer $n$ such that $x^n\in f^{-1}(I’)$ and thus $f(x^n)\in I’$.
As $f$ is a ring homomorphism, it follows that $f(x)^n=f(x^n)\in I’$.

Hence $f(x)\in \sqrt{I’}$, and then $x\in f^{-1}(\sqrt{I’})$.
This proves that $\sqrt{f^{-1}(I’)} \subset f^{-1}(\sqrt{I’})$.


$(\supset)$ Let $x\in f^{-1}(\sqrt{I’})$. Then $f(x)\in \sqrt{I’}$. It follows that there exists a positive integer $n$ such that $f(x^n)=f(x)^n\in I’$.
Hence $x^n\in f^{-1}(I’)$, and we deduce that $x\in \sqrt{f^{-1}(I’)}$.

This proves that $f^{-1}(\sqrt{I’}) \subset \sqrt{f^{-1}(I’)}$.
Combining this with the previous inclusion yields that $\sqrt{f^{-1}(I’)}=f^{-1}(\sqrt{I’})$.

(c) Suppose that $f$ is surjective and $\ker(f)\subset I$. Then prove that $f(\sqrt{I}\,) =\sqrt{f(I)}$

We now suppose that $f$ is surjective and $\ker(f)\subset I$. We proved $f(\sqrt{I}\,) \subset \sqrt{f(I)}$ in part (a). To show the reverse inclusion, let $x\in \sqrt{f(I)}\subset R’$.
Then there is a positive integer $n$ such that $x^n\in f(I)$.
So there exists $a\in I$ such that $f(a)=x^n$.

Since $f:R\to R’$ is surjective, there exists $y\in R$ such that $f(y)=x$.
Then we have
\begin{align*}
f(a)=x^n=f(y)^n=f(y^n),
\end{align*}
and hence $f(a-y^n)=0$.
Thus $a-y^n\in \ker(f) \subset I$ by assumption.
As $a\in I$, it follows that $y^n\in I$ as well.

We deduce that $y\in \sqrt{I}$ and
\[x=f(y)\in f(\sqrt{I}),\] which completes the proof that $\sqrt{f(I)} \subset f(\sqrt{I})$.

Putting together this inclusion and the inclusion in (a) yields the required equality $f(\sqrt{I}\,) =\sqrt{f(I)}$.


LoadingAdd to solve later

More from my site

  • Primary Ideals, Prime Ideals, and Radical IdealsPrimary Ideals, Prime Ideals, and Radical Ideals Let $R$ be a commutative ring with unity. A proper ideal $I$ of $R$ is called primary if whenever $ab \in I$ for $a, b\in R$, then either $a\in I$ or $b^n\in I$ for some positive integer $n$. (a) Prove that a prime ideal $P$ of $R$ is primary. (b) If $P$ is a prime ideal and […]
  • If $R$ is a Noetherian Ring and $f:R\to R’$ is a Surjective Homomorphism, then $R’$ is NoetherianIf $R$ is a Noetherian Ring and $f:R\to R’$ is a Surjective Homomorphism, then $R’$ is Noetherian Suppose that $f:R\to R'$ is a surjective ring homomorphism. Prove that if $R$ is a Noetherian ring, then so is $R'$.   Definition. A ring $S$ is Noetherian if for every ascending chain of ideals of $S$ \[I_1 \subset I_2 \subset \cdots \subset I_k \subset […]
  • The Image of an Ideal Under a Surjective Ring Homomorphism is an IdealThe Image of an Ideal Under a Surjective Ring Homomorphism is an Ideal Let $R$ and $S$ be rings. Suppose that $f: R \to S$ is a surjective ring homomorphism. Prove that every image of an ideal of $R$ under $f$ is an ideal of $S$. Namely, prove that if $I$ is an ideal of $R$, then $J=f(I)$ is an ideal of $S$.   Proof. As in the […]
  • Generators of the Augmentation Ideal in a Group RingGenerators of the Augmentation Ideal in a Group Ring Let $R$ be a commutative ring with $1$ and let $G$ be a finite group with identity element $e$. Let $RG$ be the group ring. Then the map $\epsilon: RG \to R$ defined by \[\epsilon(\sum_{i=1}^na_i g_i)=\sum_{i=1}^na_i,\] where $a_i\in R$ and $G=\{g_i\}_{i=1}^n$, is a ring […]
  • A Maximal Ideal in the Ring of Continuous Functions and a Quotient RingA Maximal Ideal in the Ring of Continuous Functions and a Quotient Ring Let $R$ be the ring of all continuous functions on the interval $[0, 2]$. Let $I$ be the subset of $R$ defined by \[I:=\{ f(x) \in R \mid f(1)=0\}.\] Then prove that $I$ is an ideal of the ring $R$. Moreover, show that $I$ is maximal and determine […]
  • Prove the Ring Isomorphism $R[x,y]/(x) \cong R[y]$Prove the Ring Isomorphism $R[x,y]/(x) \cong R[y]$ Let $R$ be a commutative ring. Consider the polynomial ring $R[x,y]$ in two variables $x, y$. Let $(x)$ be the principal ideal of $R[x,y]$ generated by $x$. Prove that $R[x, y]/(x)$ is isomorphic to $R[y]$ as a ring.   Proof. Define the map $\psi: R[x,y] \to […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]
  • $(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain.$(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain. Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$.   Proof. Consider the ring $R[t]$, where $t$ is a variable. Since $R$ is an integral domain, so is $R[t]$. Define the function $\Psi:R[x,y] \to R[t]$ sending […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Ring theory
Problems and solutions of ring theory in abstract algebra
Example of an Element in the Product of Ideals that Cannot be Written as the Product of Two Elements

Let $I=(x, 2)$ and $J=(x, 3)$ be ideal in the ring $\Z[x]$. (a) Prove that $IJ=(x, 6)$. (b) Prove that...

Close