Tagged: vector

Are these vectors in the Nullspace of the Matrix?

Problem 692

Let $A=\begin{bmatrix}
1 & 0 & 3 & -2 \\
0 &3 & 1 & 1 \\
1 & 3 & 4 & -1
\end{bmatrix}$. For each of the following vectors, determine whether the vector is in the nullspace $\calN(A)$.

(a) $\begin{bmatrix}
-3 \\
0 \\
1 \\
0
\end{bmatrix}$

(b) $\begin{bmatrix}
-4 \\
-1 \\
2 \\
1
\end{bmatrix}$

(c) $\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}$

(d) $\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$

Then, describe the nullspace $\calN(A)$ of the matrix $A$.

 
Read solution

LoadingAdd to solve later

Spanning Sets for $\R^2$ or its Subspaces

Problem 691

In this problem, we use the following vectors in $\R^2$.
\[\mathbf{a}=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{b}=\begin{bmatrix}
1 \\
1
\end{bmatrix}, \mathbf{c}=\begin{bmatrix}
2 \\
3
\end{bmatrix}, \mathbf{d}=\begin{bmatrix}
3 \\
2
\end{bmatrix}, \mathbf{e}=\begin{bmatrix}
0 \\
0
\end{bmatrix}, \mathbf{f}=\begin{bmatrix}
5 \\
6
\end{bmatrix}.\] For each set $S$, determine whether $\Span(S)=\R^2$. If $\Span(S)\neq \R^2$, then give algebraic description for $\Span(S)$ and explain the geometric shape of $\Span(S)$.

(a) $S=\{\mathbf{a}, \mathbf{b}\}$
(b) $S=\{\mathbf{a}, \mathbf{c}\}$
(c) $S=\{\mathbf{c}, \mathbf{d}\}$
(d) $S=\{\mathbf{a}, \mathbf{f}\}$
(e) $S=\{\mathbf{e}, \mathbf{f}\}$
(f) $S=\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$
(g) $S=\{\mathbf{e}\}$

 
Read solution

LoadingAdd to solve later

Prove that the Dot Product is Commutative: $\mathbf{v}\cdot \mathbf{w}= \mathbf{w} \cdot \mathbf{v}$

Problem 637

Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors.

(a) Prove that $\mathbf{v}^\trans \mathbf{w} = \mathbf{w}^\trans \mathbf{v}$.

(b) Provide an example to show that $\mathbf{v} \mathbf{w}^\trans$ is not always equal to $\mathbf{w} \mathbf{v}^\trans$.

 
Read solution

LoadingAdd to solve later

Matrix Operations with Transpose

Problem 636

Calculate the following expressions, using the following matrices:
\[A = \begin{bmatrix} 2 & 3 \\ -5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}\]

(a) $A B^\trans + \mathbf{v} \mathbf{v}^\trans$.

(b) $A \mathbf{v} – 2 \mathbf{v}$.

(c) $\mathbf{v}^{\trans} B$.

(d) $\mathbf{v}^\trans \mathbf{v} + \mathbf{v}^\trans B A^\trans \mathbf{v}$.

 
Read solution

LoadingAdd to solve later

Determine a Condition on $a, b$ so that Vectors are Linearly Dependent


Problem 563

Let
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
1 \\
a \\
5
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
0 \\
4 \\
b
\end{bmatrix}\] be vectors in $\R^3$.

Determine a condition on the scalars $a, b$ so that the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly dependent.

 
Read solution

LoadingAdd to solve later

The Matrix $[A_1, \dots, A_{n-1}, A\mathbf{b}]$ is Always Singular, Where $A=[A_1,\dots, A_{n-1}]$ and $\mathbf{b}\in \R^{n-1}$.

Problem 560

Let $A$ be an $n\times (n-1)$ matrix and let $\mathbf{b}$ be an $(n-1)$-dimensional vector.
Then the product $A\mathbf{b}$ is an $n$-dimensional vector.
Set the $n\times n$ matrix $B=[A_1, A_2, \dots, A_{n-1}, A\mathbf{b}]$, where $A_i$ is the $i$-th column vector of $A$.

Prove that $B$ is a singular matrix for any choice of $\mathbf{b}$.

 
Read solution

LoadingAdd to solve later

Prove $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ and determine those $\mathbf{x}$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$

Problem 559

For each of the following matrix $A$, prove that $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ for all vectors $\mathbf{x}$ in $\R^2$. Also, determine those vectors $\mathbf{x}\in \R^2$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$.

(a) $A=\begin{bmatrix}
4 & 2\\
2& 1
\end{bmatrix}$.

 
(b) $A=\begin{bmatrix}
2 & 1\\
1& 3
\end{bmatrix}$.

 
Read solution

LoadingAdd to solve later

Eigenvalues of Orthogonal Matrices Have Length 1. Every $3\times 3$ Orthogonal Matrix Has 1 as an Eigenvalue

Problem 419

(a) Let $A$ be a real orthogonal $n\times n$ matrix. Prove that the length (magnitude) of each eigenvalue of $A$ is $1$.


(b) Let $A$ be a real orthogonal $3\times 3$ matrix and suppose that the determinant of $A$ is $1$. Then prove that $A$ has $1$ as an eigenvalue.

 
Read solution

LoadingAdd to solve later

Quiz 5: Example and Non-Example of Subspaces in 3-Dimensional Space

Problem 304

Problem 1 Let $W$ be the subset of the $3$-dimensional vector space $\R^3$ defined by
\[W=\left\{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}\in \R^3 \quad \middle| \quad 2x_1x_2=x_3 \right\}.\]

(a) Which of the following vectors are in the subset $W$? Choose all vectors that belong to $W$.
\[(1) \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \qquad(2) \begin{bmatrix}
1 \\
2 \\
2
\end{bmatrix} \qquad(3)\begin{bmatrix}
3 \\
0 \\
0
\end{bmatrix} \qquad(4) \begin{bmatrix}
0 \\
0
\end{bmatrix} \qquad(5) \begin{bmatrix}
1 & 2 & 4 \\
1 &2 &4
\end{bmatrix} \qquad(6) \begin{bmatrix}
1 \\
-1 \\
-2
\end{bmatrix}.\]

(b) Determine whether $W$ is a subspace of $\R^3$ or not.
 


Problem 2 Let $W$ be the subset of $\R^3$ defined by
\[W=\left\{ \mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \in \R^3 \quad \middle| \quad x_1=3x_2 \text{ and } x_3=0 \right\}.\] Determine whether the subset $W$ is a subspace of $\R^3$ or not.

 
Read solution

LoadingAdd to solve later

Solve the System of Linear Equations and Give the Vector Form for the General Solution

Problem 296

Solve the following system of linear equations and give the vector form for the general solution.
\begin{align*}
x_1 -x_3 -2x_5&=1 \\
x_2+3x_3-x_5 &=2 \\
2x_1 -2x_3 +x_4 -3x_5 &= 0
\end{align*}

(The Ohio State University, linear algebra midterm exam problem)
 
Read solution

LoadingAdd to solve later

Linearly Independent vectors $\mathbf{v}_1, \mathbf{v}_2$ and Linearly Independent Vectors $A\mathbf{v}_1, A\mathbf{v}_2$ for a Nonsingular Matrix

Problem 284

Let $\mathbf{v}_1$ and $\mathbf{v}_2$ be $2$-dimensional vectors and let $A$ be a $2\times 2$ matrix.

(a) Show that if $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent vectors, then the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly dependent.

(b) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors, can we conclude that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent?

(c) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors and $A$ is nonsingular, then show that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent.

 
Read solution

LoadingAdd to solve later

Quiz 3. Condition that Vectors are Linearly Dependent/ Orthogonal Vectors are Linearly Independent

Problem 281

(a) For what value(s) of $a$ is the following set $S$ linearly dependent?
\[ S=\left \{\,\begin{bmatrix}
1 \\
2 \\
3 \\
a
\end{bmatrix}, \begin{bmatrix}
a \\
0 \\
-1 \\
2
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
a^2 \\
7
\end{bmatrix}, \begin{bmatrix}
1 \\
a \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
2 \\
-2 \\
3 \\
a^3
\end{bmatrix} \, \right\}.\]

(b) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a set of nonzero vectors in $\R^m$ such that the dot product
\[\mathbf{v}_i\cdot \mathbf{v}_j=0\] when $i\neq j$.
Prove that the set is linearly independent.

 
Read solution

LoadingAdd to solve later

Determine Linearly Independent or Linearly Dependent. Express as a Linear Combination

Problem 277

Determine whether the following set of vectors is linearly independent or linearly dependent. If the set is linearly dependent, express one vector in the set as a linear combination of the others.
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
-1 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
2 \\
3 \\
4
\end{bmatrix}, \begin{bmatrix}
-1 \\
-2 \\
0 \\
1
\end{bmatrix},
\begin{bmatrix}
-2 \\
-2 \\
7 \\
11
\end{bmatrix}\, \right\}.\]

 
Read solution

LoadingAdd to solve later