Prove that the Dot Product is Commutative: $\mathbf{v}\cdot \mathbf{w}= \mathbf{w} \cdot \mathbf{v}$

Problems and solutions in Linear Algebra

Problem 637

Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors.

(a) Prove that $\mathbf{v}^\trans \mathbf{w} = \mathbf{w}^\trans \mathbf{v}$.

(b) Provide an example to show that $\mathbf{v} \mathbf{w}^\trans$ is not always equal to $\mathbf{w} \mathbf{v}^\trans$.

 
LoadingAdd to solve later

Solution.

(a) Prove that $\mathbf{v}^\trans \mathbf{w} = \mathbf{w}^\trans \mathbf{v}$.

Suppose the vectors have component
\[\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \, \mbox{ and } \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}.\] Then,
\[\mathbf{v}^\trans \mathbf{w} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \sum_{i=1}^n v_i w_i,\] while
\[\mathbf{w}^\trans \mathbf{v} = \begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \sum_{i=1}^n w_i v_i.\] We can see that they are equal because $v_i w_i = w_i v_i$.

(b) Provide an example to show that $\mathbf{v} \mathbf{w}^\trans$ is not always equal to $\mathbf{w} \mathbf{v}^\trans$.

For the counterexample, let $\mathbf{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Then
\[\mathbf{v} \mathbf{w}^\trans = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\] while
\[\quad \mathbf{w} \mathbf{v}^\trans = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.\]

Comment.

Recall that for two vectors $\mathbf{v}, \mathbf{w} \in \R^n$, the dot product (or inner product) of $\mathbf{v}, \mathbf{w}$ is defined to be
\[\mathbf{v}\cdot \mathbf{w}:=\mathbf{v}^{\trans} \mathbf{w}.\]

Part (a) of the problem deduces that the dot product is commutative. This means that we have
\[\mathbf{v}\cdot \mathbf{w}= \mathbf{w} \cdot \mathbf{v}.\]

In fact, we have
\begin{align*}
\mathbf{v}\cdot \mathbf{w}= \mathbf{v}^\trans \mathbf{w} \stackrel{\text{(a)}}{=} \mathbf{w}^\trans \mathbf{v} \mathbf{w} \cdot \mathbf{v}.
\end{align*}


Also, notice that while $\mathbf{v} \mathbf{w}^\trans$ is not always equal to $\mathbf{w} \mathbf{v}^\trans$, we know that $(\mathbf{v} \mathbf{w}^\trans)^\trans = \mathbf{w} \mathbf{v}^\trans$.


LoadingAdd to solve later

More from my site

  • A Relation between the Dot Product and the TraceA Relation between the Dot Product and the Trace Let $\mathbf{v}$ and $\mathbf{w}$ be two $n \times 1$ column vectors. Prove that $\tr ( \mathbf{v} \mathbf{w}^\trans ) = \mathbf{v}^\trans \mathbf{w}$.   Solution. Suppose the vectors have components \[\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n […]
  • Find the Distance Between Two Vectors if the Lengths and the Dot Product are GivenFind the Distance Between Two Vectors if the Lengths and the Dot Product are Given Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are \[\|\mathbf{a}\|=\|\mathbf{b}\|=1\] and the inner product \[\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.\] Then determine the length $\|\mathbf{a}-\mathbf{b}\|$. (Note […]
  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
  • Construction of a Symmetric Matrix whose Inverse Matrix is ItselfConstruction of a Symmetric Matrix whose Inverse Matrix is Itself Let $\mathbf{v}$ be a nonzero vector in $\R^n$. Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$. Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by \[A=I-a\mathbf{v}\mathbf{v}^{\trans},\] where […]
  • Find the Inverse Matrix of a Matrix With FractionsFind the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix \[A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.\]   Hint. You may use the augmented matrix […]
  • Matrix Operations with TransposeMatrix Operations with Transpose Calculate the following expressions, using the following matrices: \[A = \begin{bmatrix} 2 & 3 \\ -5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}\] (a) $A B^\trans + \mathbf{v} […]
  • Orthogonality of Eigenvectors of a Symmetric Matrix Corresponding to Distinct EigenvaluesOrthogonality of Eigenvectors of a Symmetric Matrix Corresponding to Distinct Eigenvalues Suppose that a real symmetric matrix $A$ has two distinct eigenvalues $\alpha$ and $\beta$. Show that any eigenvector corresponding to $\alpha$ is orthogonal to any eigenvector corresponding to $\beta$. (Nagoya University, Linear Algebra Final Exam Problem)   Hint. Two […]
  • Sherman-Woodbery Formula for the Inverse MatrixSherman-Woodbery Formula for the Inverse Matrix Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\R^n$, and let $I$ be the $n \times n$ identity matrix. Suppose that the inner product of $\mathbf{u}$ and $\mathbf{v}$ satisfies \[\mathbf{v}^{\trans}\mathbf{u}\neq -1.\] Define the matrix […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Linear Algebra
Linear algebra problems and solutions
Matrix Operations with Transpose

Calculate the following expressions, using the following matrices: \[A = \begin{bmatrix} 2 & 3 \\ -5 & 1 \end{bmatrix}, \qquad...

Close