Elementary Row Operations
Definition
Let $A$ be an $m\times n$ matrix.
 The following three operations on rows of a matrix are called elementary row operations.
 Interchanging two rows:
$R_i \leftrightarrow R_j$ interchanges rows $i$ and $j$.  Multiplying a row by a nonzero scalar:
$tR_i$ multiplies row $i$ by the nonzero scalar (number) $t$.  Adding a multiple of one row to another row:
$R_j+tR_i$ adds $t$ times row $i$ to row $j$.
 Interchanging two rows:
 Two matrices are row equivalent if one can be obtained from the other by a sequence of elementary row operations.
 The matrix in reduced row echelon form that is row equivalent to $A$ is denoted by $\rref(A)$.
 The rank of a matrix $A$ is the number of rows in $\rref(A)$.
=solution
Problems

For each of the following matrices, find a rowequivalent matrix which is in reduced row echelon form. Then determine the rank of each matrix.
(a) $A = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$.
(b) $B = \begin{bmatrix} 2 & 6 & 2 \\ 3 & 2 & 8 \end{bmatrix}$.
(c) $C = \begin{bmatrix} 2 & 2 & 4 \\ 4 & 1 & 2 \\ 6 & 1 & 2 \end{bmatrix}$.
(d) $D = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$.
(e) $E = \begin{bmatrix} 2 & 3 & 1 \end{bmatrix}$. 
Let $A$ and $I$ be $2\times 2$ matrices defined as follows.
\[A=\begin{bmatrix}
1 & b\\
c& d
\end{bmatrix}, \qquad I=\begin{bmatrix}
1 & 0\\
0& 1
\end{bmatrix}.\] Prove that the matrix $A$ is row equivalent to the matrix $I$ if $dcb \neq 0$.  If $A, B$ have the same rank, can we conclude that they are rowequivalent? If so, then prove it. If not, then provide a counterexample.

Find the rank of the following real matrix.
\[ \begin{bmatrix}
a & 1 & 2 \\
1 &1 &1 \\
1 & 1 & 1a
\end{bmatrix},\] where $a$ is a real number.
(Kyoto University)  For an $m\times n$ matrix $A$, we denote by $\mathrm{rref}(A)$ the matrix in reduced row echelon form that is row equivalent to $A$. For example, consider the matrix $A=\begin{bmatrix}
1 & 1 & 1 \\
0 &2 &2
\end{bmatrix}$
Then we have
\[A=\begin{bmatrix}
1 & 1 & 1 \\
0 &2 &2
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_2}
\begin{bmatrix}
1 & 1 & 1 \\
0 &1 & 1
\end{bmatrix}
\xrightarrow{R_1R_2}
\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &1
\end{bmatrix}\] and the last matrix is in reduced row echelon form.
Hence $\mathrm{rref}(A)=\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &1
\end{bmatrix}$. Find an example of matrices $A$ and $B$ such that
\[\mathrm{rref}(AB)\neq \mathrm{rref}(A) \mathrm{rref}(B).\]  (a) Find all $3 \times 3$ matrices which are in reduced row echelon form and have rank 1.
(b) Find all such matrices with rank 2.  If $A, B, C$ are three $m \times n$ matrices such that $A$ is rowequivalent to $B$ and $B$ is rowequivalent to $C$, then can we conclude that $A$ is rowequivalent to $C$? If so, then prove it. If not, then provide a counterexample.
 Prove that if $A$ is an $n \times n$ matrix with rank $n$, then $\rref(A)$ is the identity matrix.
 Recall that a matrix $A$ is symmetric if $A^\trans = A$, where $A^\trans$ is the transpose of $A$. Is it true that if $A$ is a symmetric matrix and in reduced row echelon form, then $A$ is diagonal? If so, prove it. Otherwise, provide a counterexample.