An Example of Matrices $A$, $B$ such that $\mathrm{rref}(AB)\neq \mathrm{rref}(A) \mathrm{rref}(B)$

Problems and solutions in Linear Algebra

Problem 569

For an $m\times n$ matrix $A$, we denote by $\mathrm{rref}(A)$ the matrix in reduced row echelon form that is row equivalent to $A$.
For example, consider the matrix $A=\begin{bmatrix}
1 & 1 & 1 \\
0 &2 &2
\end{bmatrix}$
Then we have
\[A=\begin{bmatrix}
1 & 1 & 1 \\
0 &2 &2
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_2}
\begin{bmatrix}
1 & 1 & 1 \\
0 &1 & 1
\end{bmatrix}
\xrightarrow{R_1-R_2}
\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &1
\end{bmatrix}\] and the last matrix is in reduced row echelon form.
Hence $\mathrm{rref}(A)=\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &1
\end{bmatrix}$.

Find an example of matrices $A$ and $B$ such that
\[\mathrm{rref}(AB)\neq \mathrm{rref}(A) \mathrm{rref}(B).\]

 
LoadingAdd to solve later

Proof.

Let
\[A=\begin{bmatrix}
0 & 1\\
0& 0
\end{bmatrix} \text{ and } B=\begin{bmatrix}
0 & 0\\
1& 0
\end{bmatrix}.\] Then $A$ is already in reduced row echelon from.
So we have $\mathrm{rref}(A)=A$.

Applying the elementary row operations, we obtain
\[B=\begin{bmatrix}
0 & 0\\
1& 0
\end{bmatrix} \xrightarrow{R_1\leftrightarrow R_2}\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}.\] As the last matrix is in reduced row echelon from, we have $\mathrm{rref}(B)=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}$.
Therefore, we see that
\[\mathrm{rref}(A) \mathrm{rref}(B)=\begin{bmatrix}
0 & 1\\
0& 0
\end{bmatrix}
\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}=\begin{bmatrix}
0 & 0\\
0& 0
\end{bmatrix}.\]


The product of $A$ and $B$ is
\[AB=\begin{bmatrix}
0 & 1\\
0& 0
\end{bmatrix}
\begin{bmatrix}
0 & 0\\
1& 0
\end{bmatrix}=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}.\] It follows that $\mathrm{rref}(AB)=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}$.


In summary, we have
\[\mathrm{rref}(AB)=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix} \neq
\begin{bmatrix}
0 & 0\\
0& 0
\end{bmatrix}
=\mathrm{rref}(A) \mathrm{rref}(B),\] as required.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
The Powers of the Matrix with Cosine and Sine Functions

Prove the following identity for any positive integer $n$. \[\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix}^n=\begin{bmatrix}...

Close