An Example of Matrices $A$, $B$ such that $\mathrm{rref}(AB)\neq \mathrm{rref}(A) \mathrm{rref}(B)$
Problem 569
For an $m\times n$ matrix $A$, we denote by $\mathrm{rref}(A)$ the matrix in reduced row echelon form that is row equivalent to $A$.
For example, consider the matrix $A=\begin{bmatrix}
1 & 1 & 1 \\
0 &2 &2
\end{bmatrix}$
Then we have
\[A=\begin{bmatrix}
1 & 1 & 1 \\
0 &2 &2
\end{bmatrix}
\xrightarrow{\frac{1}{2}R_2}
\begin{bmatrix}
1 & 1 & 1 \\
0 &1 & 1
\end{bmatrix}
\xrightarrow{R_1-R_2}
\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &1
\end{bmatrix}\]
and the last matrix is in reduced row echelon form.
Hence $\mathrm{rref}(A)=\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &1
\end{bmatrix}$.
Find an example of matrices $A$ and $B$ such that
\[\mathrm{rref}(AB)\neq \mathrm{rref}(A) \mathrm{rref}(B).\]
Let
\[A=\begin{bmatrix}
0 & 1\\
0& 0
\end{bmatrix} \text{ and } B=\begin{bmatrix}
0 & 0\\
1& 0
\end{bmatrix}.\]
Then $A$ is already in reduced row echelon from.
So we have $\mathrm{rref}(A)=A$.
Applying the elementary row operations, we obtain
\[B=\begin{bmatrix}
0 & 0\\
1& 0
\end{bmatrix} \xrightarrow{R_1\leftrightarrow R_2}\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}.\]
As the last matrix is in reduced row echelon from, we have $\mathrm{rref}(B)=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}$.
Therefore, we see that
\[\mathrm{rref}(A) \mathrm{rref}(B)=\begin{bmatrix}
0 & 1\\
0& 0
\end{bmatrix}
\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}=\begin{bmatrix}
0 & 0\\
0& 0
\end{bmatrix}.\]
The product of $A$ and $B$ is
\[AB=\begin{bmatrix}
0 & 1\\
0& 0
\end{bmatrix}
\begin{bmatrix}
0 & 0\\
1& 0
\end{bmatrix}=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}.\]
It follows that $\mathrm{rref}(AB)=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix}$.
In summary, we have
\[\mathrm{rref}(AB)=\begin{bmatrix}
1 & 0\\
0& 0
\end{bmatrix} \neq
\begin{bmatrix}
0 & 0\\
0& 0
\end{bmatrix}
=\mathrm{rref}(A) \mathrm{rref}(B),\]
as required.
Find Values of $a$ so that the Matrix is Nonsingular
Let $A$ be the following $3 \times 3$ matrix.
\[A=\begin{bmatrix}
1 & 1 & -1 \\
0 &1 &2 \\
1 & 1 & a
\end{bmatrix}.\]
Determine the values of $a$ so that the matrix $A$ is nonsingular.
Solution.
We use the fact that a matrix is nonsingular if and only if […]
Find a Row-Equivalent Matrix which is in Reduced Row Echelon Form and Determine the Rank
For each of the following matrices, find a row-equivalent matrix which is in reduced row echelon form. Then determine the rank of each matrix.
(a) $A = \begin{bmatrix} 1 & 3 \\ -2 & 2 \end{bmatrix}$.
(b) $B = \begin{bmatrix} 2 & 6 & -2 \\ 3 & -2 & 8 \end{bmatrix}$.
(c) $C […]
Row Equivalent Matrix, Bases for the Null Space, Range, and Row Space of a Matrix
Let \[A=\begin{bmatrix}
1 & 1 & 2 \\
2 &2 &4 \\
2 & 3 & 5
\end{bmatrix}.\]
(a) Find a matrix $B$ in reduced row echelon form such that $B$ is row equivalent to the matrix $A$.
(b) Find a basis for the null space of $A$.
(c) Find a basis for the range of $A$ that […]
Determine Whether the Following Matrix Invertible. If So Find Its Inverse Matrix.
Let A be the matrix
\[\begin{bmatrix}
1 & -1 & 0 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}.\]
Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse.
(The Ohio State University Linear Algebra […]
Find All Matrices $B$ that Commutes With a Given Matrix $A$: $AB=BA$
Let
\[A=\begin{bmatrix}
1 & 3\\
2& 4
\end{bmatrix}.\]
Then
(a) Find all matrices
\[B=\begin{bmatrix}
x & y\\
z& w
\end{bmatrix}\]
such that $AB=BA$.
(b) Use the results of part (a) to exhibit $2\times 2$ matrices $B$ and $C$ such that
\[AB=BA \text{ and } […]
Solving a System of Linear Equations By Using an Inverse Matrix
Consider the system of linear equations
\begin{align*}
x_1&= 2, \\
-2x_1 + x_2 &= 3, \\
5x_1-4x_2 +x_3 &= 2
\end{align*}
(a) Find the coefficient matrix and its inverse matrix.
(b) Using the inverse matrix, solve the system of linear equations.
(The Ohio […]
Vector Space of Polynomials and Coordinate Vectors
Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\]
where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}
(a) Use the basis […]
Prove the following identity for any positive integer $n$. \[\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix}^n=\begin{bmatrix}...