Inverse Matrices
Definition
- An $n\times n$ matrix $A$ is said to be invertible if there exists an $n\times n$ matrix $B$ such that $AB=BA=I$. Such a matrix $B$ is unique and called the inverse matrix of $A$, denoted by $A^{-1}$
Summary
Let $A, B$ be $n\times n$ matrices.
- $A$ is invertible if and only if $\rref([ A \mid I_n])=[ I_n \mid A’]$ for some $n\times n$ matrix $A’$. In this case, $A’=A^{-1}$.
- $A$ is invertible if and only if $A$ is nonsingular.
- If $A, B$ are invertible, then $(AB)^{-1}=B^{-1}A^{-1}$
- A $2\times 2$ matrix $A=\begin{bmatrix}
a & b\\
c& d
\end{bmatrix}$ is invertible if and only if the determinant $\det(A)=ad-bc \neq 0$.
If $A$ is invertible, then the inverse matrix is given by $A^{-1}=\frac{1}{\det(A)}\begin{bmatrix}
d & -b\\
-c& a
\end{bmatrix}$. - If $A$ is invertible, then $A^{\trans}$ is invertible and $(A^{\trans})^{-1}=(A^{-1})^{\trans}$.
=solution
Problems
- For each of the following $3\times 3$ matrices $A$, determine whether $A$ is invertible and find the inverse $A^{-1}$ if exists by computing the augmented matrix $[A|I]$, where $I$ is the $3\times 3$ identity matrix.
(a) $A=\begin{bmatrix}
1 & 3 & -2 \\
2 &3 &0 \\
0 & 1 & -1
\end{bmatrix}$
(b) $A=\begin{bmatrix}
1 & 0 & 2 \\
-1 &-3 &2 \\
3 & 6 & -2
\end{bmatrix}$. -
Let A be the matrix
\[\begin{bmatrix}
1 & -1 & 0 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}.\] Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse.
(The Ohio State University) -
Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 1 & 2 \\
0 &0 &1 \\
1 & 0 & 1
\end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason.
(The Ohio State University) -
Let $A$ be the following $3\times 3$ upper triangular matrix.
\[A=\begin{bmatrix}
1 & x & y \\
0 &1 &z \\
0 & 0 & 1
\end{bmatrix},\] where $x, y, z$ are some real numbers. Determine whether the matrix $A$ is invertible or not. If it is invertible, then find the inverse matrix $A^{-1}$. -
For which choice(s) of the constant $k$ is the following matrix invertible?
\[A=\begin{bmatrix}
1 & 1 & 1 \\
1 &2 &k \\
1 & 4 & k^2
\end{bmatrix}.\] (Johns Hopkins University) - Suppose that $M, P$ are two $n \times n$ non-singular matrix. Prove that there is a matrix $N$ such that $MN = P$.
- Let $A$ be an $n \times n$ matrix satisfying $A^2+c_1A+c_0I=O$, where $c_0, c_1$ are scalars, $I$ is the $n\times n$ identity matrix, and $O$ is the $n\times n$ zero matrix. Prove that if $c_0\neq 0$, then the matrix $A$ is invertible (nonsingular). How about the converse? Namely, is it true that if $c_0=0$, then the matrix $A$ is not invertible?
- A square matrix $A$ is called idempotent if $A^2=A$. Show that a square invertible idempotent matrix is the identity matrix.
-
Find the inverse matrix of $A=\begin{bmatrix}
1 & 0 & 1 \\
1 &0 &0 \\
2 & 1 & 1
\end{bmatrix}$ if it exists. If you think there is no inverse matrix of $A$, then give a reason. -
Find a nonsingular $2\times 2$ matrix $A$ such that $A^3=A^2B-3A^2$, where $B=\begin{bmatrix}
4 & 1\\
2& 6
\end{bmatrix}$. Verify that the matrix $A$ you obtained is actually a nonsingular matrix. -
Determine whether there exists a nonsingular matrix $A$ if $A^2=AB+2A$, where $B$ is the following matrix. If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.
(a) \[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
1 & 2 & -2
\end{bmatrix}\] (b) \[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
2 & 1 & -4
\end{bmatrix}.\] - Determine whether there exists a nonsingular matrix $A$ if $A^4=ABA^2+2A^3$, where $B$ is the following matrix. $B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
2 & 1 & -4
\end{bmatrix}.$ If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.
(The Ohio State University, Linear Algebra Final Exam Problem) -
Let $A, B, C$ be the following $3\times 3$ matrices.
\[A=\begin{bmatrix}
1 & 2 & 3 \\
4 &5 &6 \\
7 & 8 & 9
\end{bmatrix}, B=\begin{bmatrix}
1 & 0 & 1 \\
0 &3 &0 \\
1 & 0 & 5
\end{bmatrix}, C=\begin{bmatrix}
-1 & 0\ & 1 \\
0 &5 &6 \\
3 & 0 & 1
\end{bmatrix}.\] Then compute and simplify the following expression.
\[(A^{\trans}-B)^{\trans}+C(B^{-1}C)^{-1}.\] (The Ohio State University) -
Let $A$ be the coefficient matrix of the system of linear equations
\begin{align*}
-x_1-2x_2&=1\\
2x_1+3x_2&=-1.
\end{align*}
(a) Solve the system by finding the inverse matrix $A^{-1}$.
(b) Let $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ be the solution of the system obtained in part (a). Calculate and simplify
\[A^{2017}\mathbf{x}.\] (The Ohio State University) - (a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as $A=BC$, where $B$ is a $6\times 5$ matrix and $C$ is a $5\times 6$ matrix. Prove that the matrix $A$ cannot be invertible.
(b) Let $A$ be a $2\times 2$ matrix and suppose that $A$ can be written as $A=BC$, where $B$ is a $ 2\times 3$ matrix and $C$ is a $3\times 2$ matrix. Can the matrix $A$ be invertible? -
For a real number $a$, consider $2\times 2$ matrices $A, P, Q$ satisfying the following five conditions.
(1) $A=aP+(a+1)Q$, (2) $P^2=P$, (3) $Q^2=Q$, (4) $PQ=O$, (5) $QP=O$, where $O$ is the $2\times 2$ zero matrix. Then do the following problems.
(a) Prove that $(P+Q)A=A$.
(b) Suppose $a$ is a positive real number and let $A=\begin{bmatrix}
a & 0\\
1& a+1
\end{bmatrix}$. Then find all matrices $P, Q$ satisfying conditions (1)-(5).
(c) Let $n$ be an integer greater than $1$. For any integer $k$, $2\leq k \leq n$, we define the matrix $A_k=\begin{bmatrix}
k & 0\\
1& k+1
\end{bmatrix}$. Then calculate and simplify the matrix product $A_nA_{n-1}A_{n-2}\cdots A_2$.
(Tokyo University Entrance Exam 2007) - Let $\mathbf{v}$ be a nonzero vector in $\R^n$. Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$. Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by $A=I-a\mathbf{v}\mathbf{v}^{\trans}$, where $I$ is the $n\times n$ identity matrix. Prove that $A$ is a symmetric matrix and $AA=I$. Conclude that the inverse matrix is $A^{-1}=A$.
-
Consider the system of linear equations
\begin{align*}
x_1&= 2, \\
-2x_1 + x_2 &= 3, \\
5x_1-4x_2 +x_3 &= 2
\end{align*}
(a) Find the coefficient matrix and its inverse matrix.
(b) Using the inverse matrix, solve the system of linear equations.
(The Ohio State University) - Consider the following system of linear equations
\begin{align*}
2x+3y+z&=-1\\
3x+3y+z&=1\\
2x+4y+z&=-2.
\end{align*}
(a) Find the coefficient matrix $A$ for this system.
(b) Find the inverse matrix of the coefficient matrix found in (a)
(c) Solve the system using the inverse matrix $A^{-1}$. -
Consider the matrix
\[A=\begin{bmatrix}
1 & 2 & 1 \\
2 &5 &4 \\
1 & 1 & 0
\end{bmatrix}.\] (a) Calculate the inverse matrix $A^{-1}$. If you think the matrix $A$ is not invertible, then explain why.
(b) Are the vectors
\[ \mathbf{A}_1=\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}, \mathbf{A}_2=\begin{bmatrix}
2 \\
5 \\
1
\end{bmatrix},
\text{ and } \mathbf{A}_3=\begin{bmatrix}
1 \\
4 \\
0
\end{bmatrix}\] linearly independent?
(c) Write the vector $\mathbf{b}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}$ as a linear combination of $\mathbf{A}_1$, $\mathbf{A}_2$, and $\mathbf{A}_3$.
(The Ohio State University, Linear Algebra Exam) - A $2 \times 2$ matrix $A$ satisfies $\tr(A^2)=5$ and $\tr(A)=3$. Find $\det(A)$.
-
Suppose that a real matrix $A$ maps each of the following vectors
\[\mathbf{x}_1=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_2=\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \] into the vectors
\[\mathbf{y}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \mathbf{y}_2=\begin{bmatrix}
-1 \\
0 \\
3
\end{bmatrix}, \mathbf{y}_3=\begin{bmatrix}
3 \\
1 \\
1
\end{bmatrix},\] respectively. That is, $A\mathbf{x}_i=\mathbf{y}_i$ for $i=1,2,3$. Find the matrix $A$.
(Kyoto University Exam) -
Let $A$ and $B$ are $n \times n$ matrices with real entries. Assume that $A+B$ is invertible. Then show that
\[A(A+B)^{-1}B=B(A+B)^{-1}A.\] (University of California, Berkeley Qualifying Exam) - Let $A$ be an $n\times n$ invertible matrix. Prove that the inverse matrix of $A$ is uniques.
-
Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\R^n$, and let $I$ be the $n \times n$ identity matrix. Suppose that the inner product of $\mathbf{u}$ and $\mathbf{v}$ satisfies
\[\mathbf{v}^{\trans}\mathbf{u}\neq -1.\] Define the matrix
\[A=I+\mathbf{u}\mathbf{v}^{\trans}.\] Prove that $A$ is invertible and the inverse matrix is given by the formula
\[A^{-1}=I-a\mathbf{u}\mathbf{v}^{\trans},\] where
\[a=\frac{1}{1+\mathbf{v}^{\trans}\mathbf{u}}.\] This formula is called the Sherman-Woodberry formula. - Let $A$ be a singular $2\times 2$ matrix such that $\tr(A)\neq -1$ and let $I$ be the $2\times 2$ identity matrix. Then prove that the inverse matrix of the matrix $I+A$ is given by the following formula:
\[(I+A)^{-1}=I-\frac{1}{1+\tr(A)}A.\] Using the formula, calculate the inverse matrix of $\begin{bmatrix}
2 & 1\\
1& 2
\end{bmatrix}$. -
Let $A=\begin{bmatrix}
a & 0\\
0& b
\end{bmatrix}$. Show that
(a) $A^n=\begin{bmatrix}
a^n & 0\\
0& b^n
\end{bmatrix}$ for any $n \in \N$.
(b) Let $B=S^{-1}AS$, where $S$ be an invertible $2 \times 2$ matrix. Show that $B^n=S^{-1}A^n S$ for any $n \in \N$ - Let $A$ be an $n\times n$ invertible matrix. Then prove the transpose $A^{\trans}$ is also invertible and that the inverse matrix of the transpose $A^{\trans}$ is the transpose of the inverse matrix $A^{-1}$. Namely, show that $(A^{\trans})^{-1}=(A^{-1})^{\trans}$.
-
A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.
(a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent.
(b) Let $P$ be an invertible $n \times n$ matrix and let $N$ be a nilpotent $n\times n$ matrix. Is the product $PN$ nilpotent? If so, prove it. If not, give a counterexample. -
(a) Show that if $A$ is invertible, then $A$ is nonsingular.
(b) Let $A, B, C$ be $n\times n$ matrices such that $AB=C$. Prove that if either $A$ or $B$ is singular, then so is $C$.
(c) Show that if $A$ is nonsingular, then $A$ is invertible. - A square matrix $A$ is called nilpotent if some power of $A$ is the zero matrix. Namely, $A$ is nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix. Suppose that $A$ is a nilpotent matrix and let $B$ be an invertible matrix of the same size as $A$. Is the matrix $B-A$ invertible? If so prove it. Otherwise, give a counterexample.
- Let $A$ be an $n\times n$ matrix. The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be $C_{ij}=(-1)^{ij}\det(M_{ij})$, where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column. Then consider the $n\times n$ matrix $C=(C_{ij})$, and define the $n\times n$ matrix $\Adj(A)=C^{\trans}$. The matrix $\Adj(A)$ is called the adjoint matrix of $A$. When $A$ is invertible, then its inverse can be obtained by the formula
\[A^{-1}=\frac{1}{\det(A)}\Adj(A).\] For each of the following matrices, determine whether it is invertible, and if so, then find the invertible matrix using the above formula.
(a) $A=\begin{bmatrix}
1 & 5 & 2 \\
0 &-1 &2 \\
0 & 0 & 1
\end{bmatrix}$.
(b) $B=\begin{bmatrix}
1 & 0 & 2 \\
0 &1 &4 \\
3 & 0 & 1
\end{bmatrix}$. - Let $A$ be a real symmetric matrix whose diagonal entries are all positive real numbers. Is it true that the all of the diagonal entries of the inverse matrix $A^{-1}$ are also positive? If so, prove it. Otherwise, give a counterexample.
- Let $A$ be an $n\times n$ nonsingular matrix with integer entries. Prove that the inverse matrix $A^{-1}$ contains only integer entries if and only if $\det(A)=\pm 1$.