Is the Sum of a Nilpotent Matrix and an Invertible Matrix Invertible?

Problems and solutions in Linear Algebra

Problem 582

A square matrix $A$ is called nilpotent if some power of $A$ is the zero matrix.
Namely, $A$ is nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix.

Suppose that $A$ is a nilpotent matrix and let $B$ be an invertible matrix of the same size as $A$.
Is the matrix $B-A$ invertible? If so prove it. Otherwise, give a counterexample.

 
LoadingAdd to solve later

Solution.

We claim that the matrix $B-A$ is not necessarily invertible.
Consider the matrix
\[A=\begin{bmatrix}
0 & -1 \\0& 0
\end{bmatrix}.\] This matrix is nilpotent as we have
\[A^2=\begin{bmatrix}
0 & -1 \\0& 0
\end{bmatrix}
\begin{bmatrix}
0 & -1 \\0& 0
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 \\0& 0
\end{bmatrix}.\]

Also consider the matrix
\[B=\begin{bmatrix}
1 & 0 \\1& 1
\end{bmatrix}.\] Since the determinant of the matrix $B$ is $1$, it is invertible.

So the matrix $A$ and $B$ satisfy the assumption of the problem.
However the matrix
\[B-A=\begin{bmatrix}
1 & 1 \\1& 1
\end{bmatrix}\] is not invertible as its determinant is $0$.
Hence we found a counterexample.

Related Question.

Here is another problem about a nilpotent matrix.

Problem.
Let $A$ be an $n\times n$ nilpotent matrix. Then prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity matrix.

The solution is given in the post ↴
Nilpotent Matrices and Non-Singularity of Such Matrices


LoadingAdd to solve later

Sponsored Links

More from my site

  • Is the Product of a Nilpotent Matrix and an Invertible Matrix Nilpotent?Is the Product of a Nilpotent Matrix and an Invertible Matrix Nilpotent? A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$, where $O$ is the zero matrix. (a) If $A$ is a nilpotent $n \times n$ matrix and $B$ is an $n\times n$ matrix such that $AB=BA$. Show that the product $AB$ is nilpotent. (b) Let $P$ […]
  • Every Diagonalizable Nilpotent Matrix is the Zero MatrixEvery Diagonalizable Nilpotent Matrix is the Zero Matrix Prove that if $A$ is a diagonalizable nilpotent matrix, then $A$ is the zero matrix $O$.   Definition (Nilpotent Matrix) A square matrix $A$ is called nilpotent if there exists a positive integer $k$ such that $A^k=O$. Proof. Main Part Since $A$ is […]
  • Nilpotent Matrices and Non-Singularity of Such MatricesNilpotent Matrices and Non-Singularity of Such Matrices Let $A$ be an $n \times n$ nilpotent matrix, that is, $A^m=O$ for some positive integer $m$, where $O$ is the $n \times n$ zero matrix. Prove that $A$ is a singular matrix and also prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity […]
  • True or False. Every Diagonalizable Matrix is InvertibleTrue or False. Every Diagonalizable Matrix is Invertible Is every diagonalizable matrix invertible?   Solution. The answer is No. Counterexample We give a counterexample. Consider the $2\times 2$ zero matrix. The zero matrix is a diagonal matrix, and thus it is diagonalizable. However, the zero matrix is not […]
  • 12 Examples of Subsets that Are Not Subspaces of Vector Spaces12 Examples of Subsets that Are Not Subspaces of Vector Spaces Each of the following sets are not a subspace of the specified vector space. For each set, give a reason why it is not a subspace. (1) \[S_1=\left \{\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3 \quad \middle | \quad x_1\geq 0 \,\right \}\] in […]
  • Normal Nilpotent Matrix is Zero MatrixNormal Nilpotent Matrix is Zero Matrix A complex square ($n\times n$) matrix $A$ is called normal if \[A^* A=A A^*,\] where $A^*$ denotes the conjugate transpose of $A$, that is $A^*=\bar{A}^{\trans}$. A matrix $A$ is said to be nilpotent if there exists a positive integer $k$ such that $A^k$ is the zero […]
  • Find Inverse Matrices Using Adjoint MatricesFind Inverse Matrices Using Adjoint Matrices Let $A$ be an $n\times n$ matrix. The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be \[C_{ij}=(-1)^{ij}\det(M_{ij}),\] where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column. Then consider the $n\times n$ matrix […]
  • For Which Choices of $x$ is the Given Matrix Invertible?For Which Choices of $x$ is the Given Matrix Invertible? Determine the values of $x$ so that the matrix \[A=\begin{bmatrix} 1 & 1 & x \\ 1 &x &x \\ x & x & x \end{bmatrix}\] is invertible. For those values of $x$, find the inverse matrix $A^{-1}$.   Solution. We use the fact that a matrix is invertible […]

You may also like...

1 Response

  1. 11/18/2017

    […] the post ↴ Is the Sum of a Nilpotent Matrix and an Invertible Matrix Invertible? for the […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
The Subspace of Linear Combinations whose Sums of Coefficients are zero

Let $V$ be a vector space over a scalar field $K$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$...

Close