Jordan Canonical Form

Jordan Canonical Form

=solution

Problems

  1. Let $A$ be an $n \times n$ matrix such that $\tr(A^n)=0$ for all $n \in \N$. Then prove that $A$ is a nilpotent matrix. Namely there exist a positive integer $m$ such that $A^m$ is the zero matrix.

  2. Let $A$ be $n\times n$ matrix and let $\lambda_1, \lambda_2, \dots, \lambda_n$ be all the eigenvalues of $A$. (Some of them may be the same.) For each positive integer $k$, prove that $\lambda_1^k, \lambda_2^k, \dots, \lambda_n^k$ are all the eigenvalues of $A^k$.
  3. Let $A$ be an $n\times n$ matrix and suppose that $A^r=I_n$ for some positive integer $r$. Then show that:
    (a) $|\tr(A)|\leq n$.
    (b) If $|\tr(A)|=n$, then $A=\zeta I_n$ for an $r$-th root of unity $\zeta$.
    (c) $\tr(A)=n$ if and only if $A=I_n$.

  4. Let $A$ be an $n\times n$ matrix such that $A^k=I_n$, where $k\in \N$ and $I_n$ is the $n \times n$ identity matrix. Show that the trace of $(A^{-1})^{\trans}$ is the conjugate of the trace of $A$. That is, show that $\tr((A^{-1})^{\trans})=\overline{\tr(A)}$.

  5. (a) Does there exist a $2 \times 2$ matrix $A$ with $A^3=O$ but $A^2 \neq O$? Here $O$ denotes the $2 \times 2$ zero matrix.
    (b) Does there exist a $3 \times 3$ real matrix $B$ such that $B^2=A$ where
    \[A=\begin{bmatrix}
    1 & -1 & 0 \\
    -1 &2 &-1 \\
    0 & -1 & 1
    \end{bmatrix}\,\,\,\,?\] (Princeton University)