# Tagged: inverse matrix

## Problem 721

Given any constants $a,b,c$ where $a\neq 0$, find all values of $x$ such that the matrix $A$ is invertible if
$A= \begin{bmatrix} 1 & 0 & c \\ 0 & a & -b \\ -1/a & x & x^{2} \end{bmatrix} .$

## Problem 702

The following problems are True or False.

Let $A$ and $B$ be $n\times n$ matrices.

(a) If $AB=B$, then $B$ is the identity matrix.
(b) If the coefficient matrix $A$ of the system $A\mathbf{x}=\mathbf{b}$ is invertible, then the system has infinitely many solutions.
(c) If $A$ is invertible, then $ABA^{-1}=B$.
(d) If $A$ is an idempotent nonsingular matrix, then $A$ must be the identity matrix.
(e) If $x_1=0, x_2=0, x_3=1$ is a solution to a homogeneous system of linear equation, then the system has infinitely many solutions.

## Problem 699

(a) Find a $3\times 3$ nonsingular matrix $A$ satisfying $3A=A^2+AB$, where $B=\begin{bmatrix} 2 & 0 & -1 \\ 0 &2 &-1 \\ -1 & 0 & 1 \end{bmatrix}.$

(b) Find the inverse matrix of $A$.

## Problem 694

Let $A, B, C$ be $n\times n$ invertible matrices. When you simplify the expression
$C^{-1}(AB^{-1})^{-1}(CA^{-1})^{-1}C^2,$ which matrix do you get?
(a) $A$
(b) $C^{-1}A^{-1}BC^{-1}AC^2$
(c) $B$
(d) $C^2$
(e) $C^{-1}BC$
(f) $C$

## Problem 657

Suppose that $M, P$ are two $n \times n$ non-singular matrix. Prove that there is a matrix $N$ such that $MN = P$.

## Problem 632

Suppose that $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for $\R^2$. Let $S:=[\mathbf{v}_1, \mathbf{v}_2]$.
Note that as the column vectors of $S$ are linearly independent, the matrix $S$ is invertible.

Prove that for each vector $\mathbf{v} \in V$, the vector $S^{-1}\mathbf{v}$ is the coordinate vector of $\mathbf{v}$ with respect to the basis $B$.

## Problem 610

Let $T:\R^2\to \R^2$ be a linear transformation such that it maps the vectors $\mathbf{v}_1, \mathbf{v}_2$ as indicated in the figure below.

Find the matrix representation $A$ of the linear transformation $T$.

## Problem 599

Let $A$ be a real symmetric matrix whose diagonal entries are all positive real numbers.

Is it true that the all of the diagonal entries of the inverse matrix $A^{-1}$ are also positive?
If so, prove it. Otherwise, give a counterexample.

## Problem 571

The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017.
There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold).
The time limit was 55 minutes.

This post is Part 2 and contains Problem 4, 5, and 6.
Check out Part 1 and Part 3 for the rest of the exam problems.

Problem 4. Let
$\mathbf{a}_1=\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{a}_2=\begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}, \mathbf{b}=\begin{bmatrix} 0 \\ a \\ 2 \end{bmatrix}.$

Find all the values for $a$ so that the vector $\mathbf{b}$ is a linear combination of vectors $\mathbf{a}_1$ and $\mathbf{a}_2$.

Problem 5.
Find the inverse matrix of
$A=\begin{bmatrix} 0 & 0 & 2 & 0 \\ 0 &1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$ if it exists. If you think there is no inverse matrix of $A$, then give a reason.

Problem 6.
Consider the system of linear equations
\begin{align*}
3x_1+2x_2&=1\\
5x_1+3x_2&=2.
\end{align*}

(a) Find the coefficient matrix $A$ of the system.

(b) Find the inverse matrix of the coefficient matrix $A$.

(c) Using the inverse matrix of $A$, find the solution of the system.

(Linear Algebra Midterm Exam 1, the Ohio State University)

Read solution

## Problem 570

The following problems are Midterm 1 problems of Linear Algebra (Math 2568) at the Ohio State University in Autumn 2017.
There were 9 problems that covered Chapter 1 of our textbook (Johnson, Riess, Arnold).
The time limit was 55 minutes.

This post is Part 1 and contains the first three problems.
Check out Part 2 and Part 3 for the rest of the exam problems.

Problem 1. Determine all possibilities for the number of solutions of each of the systems of linear equations described below.

(a) A consistent system of $5$ equations in $3$ unknowns and the rank of the system is $1$.

(b) A homogeneous system of $5$ equations in $4$ unknowns and it has a solution $x_1=1$, $x_2=2$, $x_3=3$, $x_4=4$.

Problem 2. Consider the homogeneous system of linear equations whose coefficient matrix is given by the following matrix $A$. Find the vector form for the general solution of the system.
$A=\begin{bmatrix} 1 & 0 & -1 & -2 \\ 2 &1 & -2 & -7 \\ 3 & 0 & -3 & -6 \\ 0 & 1 & 0 & -3 \end{bmatrix}.$

Problem 3. Let $A$ be the following invertible matrix.
$A=\begin{bmatrix} -1 & 2 & 3 & 4 & 5\\ 6 & -7 & 8& 9& 10\\ 11 & 12 & -13 & 14 & 15\\ 16 & 17 & 18& -19 & 20\\ 21 & 22 & 23 & 24 & -25 \end{bmatrix}$ Let $I$ be the $5\times 5$ identity matrix and let $B$ be a $5\times 5$ matrix.
Suppose that $ABA^{-1}=I$.
Then determine the matrix $B$.

(Linear Algebra Midterm Exam 1, the Ohio State University)

Read solution

## Problem 565

Let $I$ be the $2\times 2$ identity matrix.
Then prove that $-I$ cannot be a commutator $[A, B]:=ABA^{-1}B^{-1}$ for any $2\times 2$ matrices $A$ and $B$ with determinant $1$.

## Problem 562

An $n\times n$ matrix $A$ is called nonsingular if the only vector $\mathbf{x}\in \R^n$ satisfying the equation $A\mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$.
Using the definition of a nonsingular matrix, prove the following statements.

(a) If $A$ and $B$ are $n\times n$ nonsingular matrix, then the product $AB$ is also nonsingular.

(b) Let $A$ and $B$ be $n\times n$ matrices and suppose that the product $AB$ is nonsingular. Then:

1. The matrix $B$ is nonsingular.
2. The matrix $A$ is nonsingular. (You may use the fact that a nonsingular matrix is invertible.)

## Problem 558

Let $A$ be an $n\times n$ nonsingular matrix.

Prove that the transpose matrix $A^{\trans}$ is also nonsingular.

## Problem 556

Let $\mathbf{v}$ be a nonzero vector in $\R^n$.
Then the dot product $\mathbf{v}\cdot \mathbf{v}=\mathbf{v}^{\trans}\mathbf{v}\neq 0$.
Set $a:=\frac{2}{\mathbf{v}^{\trans}\mathbf{v}}$ and define the $n\times n$ matrix $A$ by
$A=I-a\mathbf{v}\mathbf{v}^{\trans},$ where $I$ is the $n\times n$ identity matrix.

Prove that $A$ is a symmetric matrix and $AA=I$.
Conclude that the inverse matrix is $A^{-1}=A$.

## Problem 552

For each of the following $3\times 3$ matrices $A$, determine whether $A$ is invertible and find the inverse $A^{-1}$ if exists by computing the augmented matrix $[A|I]$, where $I$ is the $3\times 3$ identity matrix.

(a) $A=\begin{bmatrix} 1 & 3 & -2 \\ 2 &3 &0 \\ 0 & 1 & -1 \end{bmatrix}$

(b) $A=\begin{bmatrix} 1 & 0 & 2 \\ -1 &-3 &2 \\ 3 & 6 & -2 \end{bmatrix}$.

## Problem 548

An $n\times n$ matrix $A$ is said to be invertible if there exists an $n\times n$ matrix $B$ such that

1. $AB=I$, and
2. $BA=I$,

where $I$ is the $n\times n$ identity matrix.

If such a matrix $B$ exists, then it is known to be unique and called the inverse matrix of $A$, denoted by $A^{-1}$.

In this problem, we prove that if $B$ satisfies the first condition, then it automatically satisfies the second condition.
So if we know $AB=I$, then we can conclude that $B=A^{-1}$.

Let $A$ and $B$ be $n\times n$ matrices.
Suppose that we have $AB=I$, where $I$ is the $n \times n$ identity matrix.

Prove that $BA=I$, and hence $A^{-1}=B$.

## Problem 547

Let $A$ be an $n\times n$ nonsingular matrix with integer entries.

Prove that the inverse matrix $A^{-1}$ contains only integer entries if and only if $\det(A)=\pm 1$.

## Problem 546

Let $A$ be an $n\times n$ matrix.

The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
$C_{ij}=(-1)^{ij}\det(M_{ij}),$ where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.

Then consider the $n\times n$ matrix $C=(C_{ij})$, and define the $n\times n$ matrix $\Adj(A)=C^{\trans}$.
The matrix $\Adj(A)$ is called the adjoint matrix of $A$.

When $A$ is invertible, then its inverse can be obtained by the formula

$A^{-1}=\frac{1}{\det(A)}\Adj(A).$

For each of the following matrices, determine whether it is invertible, and if so, then find the invertible matrix using the above formula.

(a) $A=\begin{bmatrix} 1 & 5 & 2 \\ 0 &-1 &2 \\ 0 & 0 & 1 \end{bmatrix}$.

(b) $B=\begin{bmatrix} 1 & 0 & 2 \\ 0 &1 &4 \\ 3 & 0 & 1 \end{bmatrix}$.

## Problem 506

Let $A$ be an $n\times n$ invertible matrix. Then prove the transpose $A^{\trans}$ is also invertible and that the inverse matrix of the transpose $A^{\trans}$ is the transpose of the inverse matrix $A^{-1}$.
Namely, show that
$(A^{\trans})^{-1}=(A^{-1})^{\trans}.$

## Problem 505

Let $A$ be a singular $2\times 2$ matrix such that $\tr(A)\neq -1$ and let $I$ be the $2\times 2$ identity matrix.
Then prove that the inverse matrix of the matrix $I+A$ is given by the following formula:
$(I+A)^{-1}=I-\frac{1}{1+\tr(A)}A.$

Using the formula, calculate the inverse matrix of $\begin{bmatrix} 2 & 1\\ 1& 2 \end{bmatrix}$.