Given any constants $a,b,c$ where $a\neq 0$, find all values of $x$ such that the matrix $A$ is invertible if
\[
A=
\begin{bmatrix}
1 & 0 & c \\
0 & a & -b \\
-1/a & x & x^{2}
\end{bmatrix}
.
\]

We know that $A$ is invertible precisely when $\det(A)\neq 0$. We therefore compute, by expanding along the first row,
\begin{align*}
\det(A)
&=
1
\begin{vmatrix}
a & -b \\ x & x^{2}
\end{vmatrix}
+c
\begin{vmatrix}
0 & a \\ -1/a & x
\end{vmatrix}
=
1(ax^{2}+bx)
+c(0+1)
\\
&=
ax^{2}+bx+c
.
\end{align*}
Thus $\det(A)\neq 0$ when $ax^{2}+bx+c\neq 0$. We know by the quadratic formula that $ax^{2}+bx+c=0$ precisely when
\[
x=
\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2}
.
\]
Therefore, $A$ is invertible so long as $x$ satisfies both of the following inequalities:
\[
x\neq
\dfrac{-b+\sqrt{b^{2}-4ac}}{2}
,\quad
x\neq
\dfrac{-b-\sqrt{b^{2}-4ac}}{2}
.
\]

Find Inverse Matrices Using Adjoint Matrices
Let $A$ be an $n\times n$ matrix.
The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
\[C_{ij}=(-1)^{ij}\det(M_{ij}),\]
where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.
Then consider the $n\times n$ matrix […]

For Which Choices of $x$ is the Given Matrix Invertible?
Determine the values of $x$ so that the matrix
\[A=\begin{bmatrix}
1 & 1 & x \\
1 &x &x \\
x & x & x
\end{bmatrix}\]
is invertible.
For those values of $x$, find the inverse matrix $A^{-1}$.
Solution.
We use the fact that a matrix is invertible […]

Find All the Eigenvalues of Power of Matrix and Inverse Matrix
Let
\[A=\begin{bmatrix}
3 & -12 & 4 \\
-1 &0 &-2 \\
-1 & 5 & -1
\end{bmatrix}.\]
Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.
Proof.
We first determine all the eigenvalues of the matrix […]

Eigenvalues and their Algebraic Multiplicities of a Matrix with a Variable
Determine all eigenvalues and their algebraic multiplicities of the matrix
\[A=\begin{bmatrix}
1 & a & 1 \\
a &1 &a \\
1 & a & 1
\end{bmatrix},\]
where $a$ is a real number.
Proof.
To find eigenvalues we first compute the characteristic polynomial of the […]

Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation
(a) Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 0 & 1 \\
1 &0 &0 \\
2 & 1 & 1
\end{bmatrix}\]
if it exists. If you think there is no inverse matrix of $A$, then give a reason.
(b) Find a nonsingular $2\times 2$ matrix $A$ such that
\[A^3=A^2B-3A^2,\]
where […]

Determine Whether There Exists a Nonsingular Matrix Satisfying $A^4=ABA^2+2A^3$
Determine whether there exists a nonsingular matrix $A$ if
\[A^4=ABA^2+2A^3,\]
where $B$ is the following matrix.
\[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
2 & 1 & -4
\end{bmatrix}.\]
If such a nonsingular matrix $A$ exists, find the inverse […]

Compute the Determinant of a Magic Square
Let
\[
A=
\begin{bmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{bmatrix}
.
\]
Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic […]

The Formula for the Inverse Matrix of $I+A$ for a $2\times 2$ Singular Matrix $A$
Let $A$ be a singular $2\times 2$ matrix such that $\tr(A)\neq -1$ and let $I$ be the $2\times 2$ identity matrix.
Then prove that the inverse matrix of the matrix $I+A$ is given by the following formula:
\[(I+A)^{-1}=I-\frac{1}{1+\tr(A)}A.\]
Using the formula, calculate […]