# Compute the Determinant of a Magic Square

## Problem 718

Let
$A= \begin{bmatrix} 8 & 1 & 6 \\ 3 & 5 & 7 \\ 4 & 9 & 2 \end{bmatrix} .$ Notice that $A$ contains every integer from $1$ to $9$ and that the sums of each row, column, and diagonal of $A$ are equal. Such a grid is sometimes called a magic square.

Compute the determinant of $A$.

## Solution.

We compute using the first row cofactor expansion
\begin{align*}
\det(A)
&=
\begin{vmatrix}
8 & 1 & 6 \\
3 & 5 & 7 \\
4 & 9 & 2
\end{vmatrix}\6pt] &= 8 \begin{vmatrix} 5 & 7 \\ 9 & 2 \end{vmatrix} -1 \begin{vmatrix} 3 & 7 \\ 4 & 2 \end{vmatrix} +6 \begin{vmatrix} 3 & 5 \\ 4 & 9 \end{vmatrix} \\[6pt] &= 8(10-63)-(6-28)+6(27-20)\\[6pt] &= 8(-53)-(-22)+6(7) \\[6pt] &= -424+22+42\\[6pt] &= -360. \end{align*} Sponsored Links ### More from my site • Find Inverse Matrices Using Adjoint Matrices Let A be an n\times n matrix. The (i, j) cofactor C_{ij} of A is defined to be \[C_{ij}=(-1)^{ij}\det(M_{ij}), where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column. Then consider the $n\times n$ matrix […]
• Determine Whether There Exists a Nonsingular Matrix Satisfying $A^4=ABA^2+2A^3$ Determine whether there exists a nonsingular matrix $A$ if $A^4=ABA^2+2A^3,$ where $B$ is the following matrix. $B=\begin{bmatrix} -1 & 1 & -1 \\ 0 &-1 &0 \\ 2 & 1 & -4 \end{bmatrix}.$ If such a nonsingular matrix $A$ exists, find the inverse […]
• Find All Values of $x$ such that the Matrix is Invertible Given any constants $a,b,c$ where $a\neq 0$, find all values of $x$ such that the matrix $A$ is invertible if $A= \begin{bmatrix} 1 & 0 & c \\ 0 & a & -b \\ -1/a & x & x^{2} \end{bmatrix} .$   Solution. We know that $A$ is invertible precisely when […]
• How to Use the Cayley-Hamilton Theorem to Find the Inverse Matrix Find the inverse matrix of the $3\times 3$ matrix $A=\begin{bmatrix} 7 & 2 & -2 \\ -6 &-1 &2 \\ 6 & 2 & -1 \end{bmatrix}$ using the Cayley-Hamilton theorem.   Solution. To apply the Cayley-Hamilton theorem, we first determine the characteristic […]
• Find the Inverse Matrix Using the Cayley-Hamilton Theorem Find the inverse matrix of the matrix $A=\begin{bmatrix} 1 & 1 & 2 \\ 9 &2 &0 \\ 5 & 0 & 3 \end{bmatrix}$ using the Cayley–Hamilton theorem.   Solution. To use the Cayley-Hamilton theorem, we first compute the characteristic polynomial $p(t)$ of […]
• Compute Determinant of a Matrix Using Linearly Independent Vectors Let $A$ be a $3 \times 3$ matrix. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have $A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 […] • Quiz 11. Find Eigenvalues and Eigenvectors/ Properties of Determinants (a) Find all the eigenvalues and eigenvectors of the matrix \[A=\begin{bmatrix} 3 & -2\\ 6& -4 \end{bmatrix}.$ (b) Let A=\begin{bmatrix} 1 & 0 & 3 \\ 4 &5 &6 \\ 7 & 0 & 9 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 &0 […] • Use Cramer’s Rule to Solve a 2\times 2 System of Linear Equations Use Cramer's rule to solve the system of linear equations \begin{align*} 3x_1-2x_2&=5\\ 7x_1+4x_2&=-1. \end{align*} Solution. Let \[A=[A_1, A_2]=\begin{bmatrix} 3 & -2\\ 7& 4 \end{bmatrix}, be the coefficient matrix of the system, where $A_1, A_2$ […]

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Are These Linear Transformations?

Define two functions $T:\R^{2}\to\R^{2}$ and $S:\R^{2}\to\R^{2}$ by \[ T\left( \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} 2x+y \\ 0...

Close