Let $B$ be the $3\times 3$ matrix whose columns are the vectors $\mathbf{x},\mathbf{y}, \mathbf{z}$, that is,
\[B=[\mathbf{x} \mathbf{y} \mathbf{z}].\]

Then we have
\[AB=\begin{bmatrix}
1 & 0 & 1 \\
0 &1 &1 \\
1 & 0 & 1
\end{bmatrix}.\]

Then we have
\[\det(A)\det(B)=\det(AB)=\begin{vmatrix}
1 & 0 & 1 \\
0 &1 &1 \\
1 & 0 & 1
\end{vmatrix}=0.\]
(If two rows are equal, then the determinant is zero. Or you may compute the determinant by the second column cofactor expansion.)

Note that the column vectors of $B$ are linearly independent, and hence $B$ is nonsingular matrix. Thus the $\det(B)\neq 0$.
Therefore the determinant of $A$ must be zero.

we have
\[A\mathbf{x}+A\mathbf{y}=A\mathbf{z}.\]
It follows that we have
\[A(\mathbf{x}+\mathbf{y}-\mathbf{z})=\mathbf{0}.\]

Since the vectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent, the linear combination $\mathbf{x}+\mathbf{y}-\mathbf{z} \neq \mathbf{0}$.
Hence the matrix $A$ is singular, and the determinant of $A$ is zero.

(Recall that a matrix $A$ is singular if and only if there exist nonzero vector $\mathbf{v}$ such that $A\mathbf{u}=\mathbf{0}$.)

Find Values of $h$ so that the Given Vectors are Linearly Independent
Find the value(s) of $h$ for which the following set of vectors
\[\left \{ \mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
h \\
1 \\
-h
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2h \\
3h+1
[…]

Find All Values of $x$ so that a Matrix is Singular
Let
\[A=\begin{bmatrix}
1 & -x & 0 & 0 \\
0 &1 & -x & 0 \\
0 & 0 & 1 & -x \\
0 & 1 & 0 & -1
\end{bmatrix}\]
be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.
Hint.
Use the fact that a matrix is singular if and only […]

Properties of Nonsingular and Singular Matrices
An $n \times n$ matrix $A$ is called nonsingular if the only solution of the equation $A \mathbf{x}=\mathbf{0}$ is the zero vector $\mathbf{x}=\mathbf{0}$.
Otherwise $A$ is called singular.
(a) Show that if $A$ and $B$ are $n\times n$ nonsingular matrices, then the product $AB$ is […]

Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$
Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities.
What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix?
(The Ohio State University, Linear Algebra Final Exam […]

Determine Conditions on Scalars so that the Set of Vectors is Linearly Dependent
Determine conditions on the scalars $a, b$ so that the following set $S$ of vectors is linearly dependent.
\begin{align*}
S=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\},
\end{align*}
where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
3 \\
1
\end{bmatrix}, […]

Rotation Matrix in Space and its Determinant and Eigenvalues
For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\]
(a) Find the determinant of the matrix $A$.
(b) Show that $A$ is an […]

Find All the Values of $x$ so that a Given $3\times 3$ Matrix is Singular
Find all the values of $x$ so that the following matrix $A$ is a singular matrix.
\[A=\begin{bmatrix}
x & x^2 & 1 \\
2 &3 &1 \\
0 & -1 & 1
\end{bmatrix}.\]
Hint.
Use the fact that a matrix is singular if and only if its determinant is […]

Maximize the Dimension of the Null Space of $A-aI$
Let
\[ A=\begin{bmatrix}
5 & 2 & -1 \\
2 &2 &2 \\
-1 & 2 & 5
\end{bmatrix}.\]
Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.
Your score of this problem is equal to that […]

Let \[A=\begin{bmatrix} 1 & -1\\ 2& 3 \end{bmatrix}.\] Find the eigenvalues and the eigenvectors of the matrix \[B=A^4-3A^3+3A^2-2A+8E.\] (Nagoya University...