# For Which Choices of $x$ is the Given Matrix Invertible?

## Problem 394

Determine the values of $x$ so that the matrix
$A=\begin{bmatrix} 1 & 1 & x \\ 1 &x &x \\ x & x & x \end{bmatrix}$ is invertible.
For those values of $x$, find the inverse matrix $A^{-1}$.

## Solution.

We use the fact that a matrix is invertible if and only if its determinant is nonzero.
So we compute the determinant of the matrix $A$.

We have
\begin{align*}
&\det(A)=\begin{vmatrix}
1 & 1 & x \\
1 &x &x \\
x & x & x
\end{vmatrix}\\
&=(1)\begin{vmatrix}
x & x\\
x& x
\end{vmatrix}-(1)\begin{vmatrix}
1 & x\\
x& x
\end{vmatrix}+x\begin{vmatrix}
1 & x\\
x& x
\end{vmatrix} && \text{by the first row cofactor expansion.}\\
&=(x^2-x^2)-(x-x^2)+x(x-x^2)\\
&=(x-1)(x-x^2)\\
&=x(x-1)^2.
\end{align*}

Thus, the determinant $\det(A)$ is zero if and only if $x=0, 1$.
Hence the matrix $A$ is invertible if and only if $x\neq 0, 1$.

Next, we suppose that $x \neq 0, 1$ and find the inverse matrix of $A$.
We reduce the augmented matrix $[A\mid I]$ as follows.
We have
\begin{align*}
&[A\mid I]= \left[\begin{array}{rrr|rrr}
1 & 1 & x & 1 &0 & 0 \\
1 & x & x & 0 & 1 & 0 \\
x & x & x & 0 & 0 & 1 \\
\end{array} \right] \6pt] & \xrightarrow{\substack{R_2-R_1 \\ R_3-xR_1}} \left[\begin{array}{rrr|rrr} 1 & 1 & x & 1 &0 & 0 \\ 0 & x-1 & 0 & -1 & 1 & 0 \\ 0 & 0 & x-x^2 & -x & 0 & 1 \\ \end{array} \right] \xrightarrow[\frac{1}{x-x^2} R_3]{\frac{1}{x-1}R_2} \left[\begin{array}{rrr|rrr} 1 & 1 & x & 1 &0 & 0 \\[8pt] 0 & 1 & 0 & \frac{-1}{x-1} & \frac{1}{x-1} & 0 \\[8pt] 0 & 0 & 1 & \frac{-1}{1-x} & 0 & \frac{1}{x-x^2} \\ \end{array} \right]\\[6pt] & \xrightarrow{R_1-R_2} \left[\begin{array}{rrr|rrr} 1 & 0 & x & \frac{x}{x-1} & \frac{-1}{x-1} & 0 \\[8pt] 0 & 1 & 0 & \frac{-1}{x-1} & \frac{1}{x-1} & 0 \\[8pt] 0 & 0 & 1 & \frac{-1}{1-x} & 0 & \frac{1}{x-x^2} \\ \end{array} \right] \xrightarrow{R_1-xR_3} \left[\begin{array}{rrr|rrr} 1 & 0 & 0 & 0 & \frac{-1}{x-1} & \frac{-x}{x-x^2}\\[8pt] 0 & 1 & 0 & \frac{-1}{x-1} & \frac{1}{x-1} & 0 \\[8pt] 0 & 0 & 1 & \frac{-1}{1-x} & 0 & \frac{1}{x-x^2} \\ \end{array} \right]. \end{align*} Now that we reduced the left 3\times 3 matrix into the identity matrix, the right 3\times 3 matrix is the inverse matrix of A. (Note that when we applied elementary row operations, we divided by x-1 and x-x^2, and this is where we needed to assume x \neq 0, 1.) We have \begin{align*} A^{-1}=\begin{bmatrix} 0 & \frac{-1}{x-1} & \frac{-x}{x-x^2}\\[8pt] \frac{-1}{x-1} & \frac{1}{x-1} & 0 \\[8pt] \frac{-1}{1-x} & 0 & \frac{1}{x-x^2} \\ \end{bmatrix} =\frac{1}{x(1-x)}\begin{bmatrix} 0 & x & -x \\ x &-x &0 \\ -x & 0 & 1 \end{bmatrix}. \end{align*} Sponsored Links ### More from my site • Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation (a) Find the inverse matrix of \[A=\begin{bmatrix} 1 & 0 & 1 \\ 1 &0 &0 \\ 2 & 1 & 1 \end{bmatrix} if it exists. If you think there is no inverse matrix of $A$, then give a reason. (b) Find a nonsingular $2\times 2$ matrix $A$ such that $A^3=A^2B-3A^2,$ where […]
• Find Inverse Matrices Using Adjoint Matrices Let $A$ be an $n\times n$ matrix. The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be $C_{ij}=(-1)^{ij}\det(M_{ij}),$ where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column. Then consider the $n\times n$ matrix […]
• Find the Inverse Matrices if Matrices are Invertible by Elementary Row Operations For each of the following $3\times 3$ matrices $A$, determine whether $A$ is invertible and find the inverse $A^{-1}$ if exists by computing the augmented matrix $[A|I]$, where $I$ is the $3\times 3$ identity matrix. (a) $A=\begin{bmatrix} 1 & 3 & -2 \\ 2 &3 &0 \\ […] • The Inverse Matrix of an Upper Triangular Matrix with Variables Let$A$be the following$3\times 3$upper triangular matrix. $A=\begin{bmatrix} 1 & x & y \\ 0 &1 &z \\ 0 & 0 & 1 \end{bmatrix},$ where$x, y, z$are some real numbers. Determine whether the matrix$A$is invertible or not. If it is invertible, then find […] • A Matrix Similar to a Diagonalizable Matrix is Also Diagonalizable Let$A, B$be matrices. Show that if$A$is diagonalizable and if$B$is similar to$A$, then$B$is diagonalizable. Definitions/Hint. Recall the relevant definitions. Two matrices$A$and$B$are similar if there exists a nonsingular (invertible) matrix$S$such […] • Find All Values of$x$such that the Matrix is Invertible Given any constants$a,b,c$where$a\neq 0$, find all values of$x$such that the matrix$A$is invertible if $A= \begin{bmatrix} 1 & 0 & c \\ 0 & a & -b \\ -1/a & x & x^{2} \end{bmatrix} .$ Solution. We know that$A$is invertible precisely when […] • Determine Whether the Following Matrix Invertible. If So Find Its Inverse Matrix. Let A be the matrix $\begin{bmatrix} 1 & -1 & 0 \\ 0 &1 &-1 \\ 0 & 0 & 1 \end{bmatrix}.$ Is the matrix$A$invertible? If not, then explain why it isn’t invertible. If so, then find the inverse. (The Ohio State University Linear Algebra […] • How to Find the Determinant of the$3\times 3$Matrix Find the determinant of the matix $A=\begin{bmatrix} 100 & 101 & 102 \\ 101 &102 &103 \\ 102 & 103 & 104 \end{bmatrix}.$ Solution. Note that the determinant does not change if the$i$-th row is added by a scalar multiple of the$j$-th row if$i \neq […]

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### If a Matrix is the Product of Two Matrices, is it Invertible?

(a) Let $A$ be a $6\times 6$ matrix and suppose that $A$ can be written as $A=BC,$ where $B$ is...

Close