# Tagged: eigenvalue

## Problem 720

Find all eigenvalues and corresponding eigenvectors for the matrix $A$ if
$A= \begin{bmatrix} 2 & -3 & 0 \\ 2 & -5 & 0 \\ 0 & 0 & 3 \end{bmatrix} .$

## Problem 719

Let $A$ be the matrix given by
$A= \begin{bmatrix} -2 & 0 & 1 \\ -5 & 3 & a \\ 4 & -2 & -1 \end{bmatrix}$ for some variable $a$. Find all values of $a$ which will guarantee that $A$ has eigenvalues $0$, $3$, and $-3$.

## Problem 686

In each of the following cases, can we conclude that $A$ is invertible? If so, find an expression for $A^{-1}$ as a linear combination of positive powers of $A$. If $A$ is not invertible, explain why not.

(a) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , \lambda=-i$, and $\lambda=0$.

(b) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , \lambda=-i$, and $\lambda=-1$.

## Problem 668

Consider the system of differential equations
\begin{align*}
\frac{\mathrm{d} x_1(t)}{\mathrm{d}t} & = 2 x_1(t) -x_2(t) -x_3(t)\\
\frac{\mathrm{d}x_2(t)}{\mathrm{d}t} & = -x_1(t)+2x_2(t) -x_3(t)\\
\frac{\mathrm{d}x_3(t)}{\mathrm{d}t} & = -x_1(t) -x_2(t) +2x_3(t)
\end{align*}

(a) Express the system in the matrix form.

(b) Find the general solution of the system.

(c) Find the solution of the system with the initial value $x_1=0, x_2=1, x_3=5$.

## Problem 667

(a) Find all solutions of the linear dynamical system
$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} =\begin{bmatrix} 1 & 0\\ 0& 3 \end{bmatrix}\mathbf{x},$ where $\mathbf{x}(t)=\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is a function of the variable $t$.

(b) Solve the linear dynamical system
$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}=\begin{bmatrix} 2 & -1\\ -1& 2 \end{bmatrix}\mathbf{x}$ with the initial value $\mathbf{x}(0)=\begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

## Problem 631

Let $A=\begin{bmatrix} a & b\\ c& d \end{bmatrix}$ be an $2\times 2$ matrix.

Express the eigenvalues of $A$ in terms of the trace and the determinant of $A$.

## Problem 630

Consider the matrix $A=\begin{bmatrix} a & -b\\ b& a \end{bmatrix}$, where $a$ and $b$ are real numbers and $b\neq 0$.

(a) Find all eigenvalues of $A$.

(b) For each eigenvalue of $A$, determine the eigenspace $E_{\lambda}$.

(c) Diagonalize the matrix $A$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

## Problem 629

Diagonalize the $2\times 2$ matrix $A=\begin{bmatrix} 2 & -1\\ -1& 2 \end{bmatrix}$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

## Problem 609

Let $A$ be a $2\times 2$ real symmetric matrix.
Prove that all the eigenvalues of $A$ are real numbers by considering the characteristic polynomial of $A$.

## Problem 608

Let $A$ and $B$ be $n\times n$ matrices and assume that they commute: $AB=BA$.
Then prove that the matrices $A$ and $B$ share at least one common eigenvector.

## Problem 596

Let
$A=\begin{bmatrix} a & b\\ -b& a \end{bmatrix}$ be a $2\times 2$ matrix, where $a, b$ are real numbers.
Suppose that $b\neq 0$.

Prove that the matrix $A$ does not have real eigenvalues.

## Problem 593

We fix a nonzero vector $\mathbf{a}$ in $\R^3$ and define a map $T:\R^3\to \R^3$ by
$T(\mathbf{v})=\mathbf{a}\times \mathbf{v}$ for all $\mathbf{v}\in \R^3$.
Here the right-hand side is the cross product of $\mathbf{a}$ and $\mathbf{v}$.

(a) Prove that $T:\R^3\to \R^3$ is a linear transformation.

(b) Determine the eigenvalues and eigenvectors of $T$.

## Problem 585

Consider the Hermitian matrix
$A=\begin{bmatrix} 1 & i\\ -i& 1 \end{bmatrix}.$

(a) Find the eigenvalues of $A$.

(b) For each eigenvalue of $A$, find the eigenvectors.

(c) Diagonalize the Hermitian matrix $A$ by a unitary matrix. Namely, find a diagonal matrix $D$ and a unitary matrix $U$ such that $U^{-1}AU=D$.

## Problem 584

Prove that the matrix
$A=\begin{bmatrix} 0 & 1\\ -1& 0 \end{bmatrix}$ is diagonalizable.
Prove, however, that $A$ cannot be diagonalized by a real nonsingular matrix.
That is, there is no real nonsingular matrix $S$ such that $S^{-1}AS$ is a diagonal matrix.

## Problem 583

Consider the $2\times 2$ complex matrix
$A=\begin{bmatrix} a & b-a\\ 0& b \end{bmatrix}.$

(a) Find the eigenvalues of $A$.

(b) For each eigenvalue of $A$, determine the eigenvectors.

(c) Diagonalize the matrix $A$.

(d) Using the result of the diagonalization, compute and simplify $A^k$ for each positive integer $k$.

## Problem 550

Consider the $2\times 2$ matrix
$A=\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix},$ where $\theta$ is a real number $0\leq \theta < 2\pi$.

(a) Find the characteristic polynomial of the matrix $A$.

(b) Find the eigenvalues of the matrix $A$.

(c) Determine the eigenvectors corresponding to each of the eigenvalues of $A$.

## Problem 533

Consider the complex matrix
$A=\begin{bmatrix} \sqrt{2}\cos x & i \sin x & 0 \\ i \sin x &0 &-i \sin x \\ 0 & -i \sin x & -\sqrt{2} \cos x \end{bmatrix},$ where $x$ is a real number between $0$ and $2\pi$.

Determine for which values of $x$ the matrix $A$ is diagonalizable.
When $A$ is diagonalizable, find a diagonal matrix $D$ so that $P^{-1}AP=D$ for some nonsingular matrix $P$.

## Problem 527

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.

Prove that $P$ is an idempotent matrix.

(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be unit vectors in $\R^n$ such that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Let $Q=\mathbf{u}\mathbf{u}^{\trans}+\mathbf{v}\mathbf{v}^{\trans}$.

Prove that $Q$ is an idempotent matrix.

(c) Prove that each nonzero vector of the form $a\mathbf{u}+b\mathbf{v}$ for some $a, b\in \R$ is an eigenvector corresponding to the eigenvalue $1$ for the matrix $Q$ in part (b).

## Top 10 Popular Math Problems in 2016-2017

It’s been a year since I started this math blog!!

More than 500 problems were posted during a year (July 19th 2016-July 19th 2017).

I made a list of the 10 math problems on this blog that have the most views.

Can you solve all of them?

The level of difficulty among the top 10 problems.
【★★★】 Difficult (Final Exam Level)
【★★☆】 Standard(Midterm Exam Level)
【★☆☆】 Easy (Homework Level)

Read solution

## Problem 513

Let $A$ be a square matrix. A matrix $B$ satisfying $B^2=A$ is call a square root of $A$.

Find all the square roots of the matrix
$A=\begin{bmatrix} 2 & 2\\ 2& 2 \end{bmatrix}.$