Recall the definitions of the trace and determinant of $A$:
\[\tr(A)=a+d \text{ and } \det(A)=ad-bc.\]

The eigenvalues of $A$ are roots of the characteristic polynomial $p(t)$ of $A$. So let us first find $p(t)$.
We have
\begin{align*}
p(t) &= \det(A-tI)=\begin{vmatrix}
a-t & b\\
c& d-t
\end{vmatrix}\\[6pt]
&=(a-t)(d-t)-bc\\
&=t^2-(a+d)t+ad-bc\\
&=t^2-\tr(A) t+\det(A).
\end{align*}

Using the quadratic formula, the eigenvalues of A (roots of $p(t)$) are
\[\frac{\tr(A) \pm \sqrt{\tr(A)^2-4\det(A)}}{2}.\]

Determine Whether Given Matrices are Similar
(a) Is the matrix $A=\begin{bmatrix}
1 & 2\\
0& 3
\end{bmatrix}$ similar to the matrix $B=\begin{bmatrix}
3 & 0\\
1& 2
\end{bmatrix}$?
(b) Is the matrix $A=\begin{bmatrix}
0 & 1\\
5& 3
\end{bmatrix}$ similar to the matrix […]

If Two Matrices are Similar, then their Determinants are the Same
Prove that if $A$ and $B$ are similar matrices, then their determinants are the same.
Proof.
Suppose that $A$ and $B$ are similar. Then there exists a nonsingular matrix $S$ such that
\[S^{-1}AS=B\]
by definition.
Then we […]

An Example of a Matrix that Cannot Be a Commutator
Let $I$ be the $2\times 2$ identity matrix.
Then prove that $-I$ cannot be a commutator $[A, B]:=ABA^{-1}B^{-1}$ for any $2\times 2$ matrices $A$ and $B$ with determinant $1$.
Proof.
Assume that $[A, B]=-I$. Then $ABA^{-1}B^{-1}=-I$ implies
\[ABA^{-1}=-B. […]

If 2 by 2 Matrices Satisfy $A=AB-BA$, then $A^2$ is Zero Matrix
Let $A, B$ be complex $2\times 2$ matrices satisfying the relation
\[A=AB-BA.\]
Prove that $A^2=O$, where $O$ is the $2\times 2$ zero matrix.
Hint.
Find the trace of $A$.
Use the Cayley-Hamilton theorem
Proof.
We first calculate the […]

Trace, Determinant, and Eigenvalue (Harvard University Exam Problem)
(a) A $2 \times 2$ matrix $A$ satisfies $\tr(A^2)=5$ and $\tr(A)=3$.
Find $\det(A)$.
(b) A $2 \times 2$ matrix has two parallel columns and $\tr(A)=5$. Find $\tr(A^2)$.
(c) A $2\times 2$ matrix $A$ has $\det(A)=5$ and positive integer eigenvalues. What is the trace of […]

Eigenvalues of a Matrix and its Transpose are the Same
Let $A$ be a square matrix.
Prove that the eigenvalues of the transpose $A^{\trans}$ are the same as the eigenvalues of $A$.
Proof.
Recall that the eigenvalues of a matrix are roots of its characteristic polynomial.
Hence if the matrices $A$ and $A^{\trans}$ […]

Find All Values of $a$ which Will Guarantee that $A$ Has Eigenvalues 0, 3, and -3.
Let $A$ be the matrix given by
\[
A=
\begin{bmatrix}
-2 & 0 & 1 \\
-5 & 3 & a \\
4 & -2 & -1
\end{bmatrix}
\]
for some variable $a$. Find all values of $a$ which will guarantee that $A$ has eigenvalues $0$, $3$, and $-3$.
Solution.
Let $p(t)$ be the […]