Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$

Linear algebra problems and solutions

Problem 154

Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}\right )=\begin{bmatrix}
x_1-x_2 \\
x_1+x_2 \\
x_2
\end{bmatrix}$.

(a) Show that $T$ is a linear transformation.

(b) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for each $\mathbf{x} \in \R^2$.

(c) Describe the null space (kernel) and the range of $T$ and give the rank and the nullity of $T$.

 
LoadingAdd to solve later

Proof.

(a) Show that $T$ is a linear transformation.

To show that $T: \R^2 \to \R^3$ is a linear transformation, the map $T$ needs to satisfy:

(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for any $\mathbf{u}, \mathbf{v}\in \R^2$, and
(ii) $T(c\mathbf{v})=cT(\mathbf{v})$ for any $\mathbf{v} \in \R^2$ and $c\in \R$.

To check (i), let
\[\mathbf{u}=\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}, \mathbf{v}=\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}\in \R^2.\] We have
\begin{align*}
T(\mathbf{u}+\mathbf{v})&=T\left( \begin{bmatrix}
u_1+v_1 \\
u_2+v_2
\end{bmatrix} \right) =\begin{bmatrix}
(u_1+v_1)-(u_2+v_2) \\
(u_1+v_1)+(u_2+v_2) \\
u_2+v_2
\end{bmatrix}\\[6pt] &=
\begin{bmatrix}
(u_1-u_2)+(v_1-v_2) \\
(u_1+u_2)+(v_1+v_2) \\
u_2+v_2
\end{bmatrix}
=
\begin{bmatrix}
u_1-u_2\\
u_1+u_2 \\
u_2
\end{bmatrix}+
\begin{bmatrix}
v_1-v_2 \\
v_1+v_2 \\
v_2
\end{bmatrix}\\[6pt] &=T(\mathbf{u})+T(\mathbf{v}).
\end{align*}
Thus condition (i) holds.


To check (ii), consider any $\mathbf{v}=\begin{bmatrix}
v_1 \\
v_2
\end{bmatrix}$ and $c\in \R$.
Then we have
\begin{align*}
T(c\mathbf{v})=&T\left( \begin{bmatrix}
cv_1 \\
cv_2
\end{bmatrix}
\right)
= \begin{bmatrix}
cv_1-cv_2 \\
cv_1+cv_2 \\
cv_2
\end{bmatrix}\\[6pt] &= c\begin{bmatrix}
v_1-v_2 \\
v_1+v_2 \\
v_2
\end{bmatrix}
=cT(\mathbf{v}).
\end{align*}
Thus condition (ii) is met and the map $T$ is a linear transformation from $\R^2$ to $\R^3$.

(b) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$ for each $\mathbf{x} \in \R^2$.

(b) Let
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}\] be the standard basis vectors of $\R^2$.
The matrix $A$ satisfying $T(\mathbf{x})=A\mathbf{x}$ can be obtained as
\[A=[T(\mathbf{e}_1)\quad T(\mathbf{e}_2)].\] Since we have
\[T(\mathbf{e}_1)=\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix} \text{ and } T(\mathbf{e}_2)=\begin{bmatrix}
-1 \\
1 \\
1
\end{bmatrix},\] we obtain the matrix
\[A=\begin{bmatrix}
1 & -1 \\
1 & 1 \\
0 &1
\end{bmatrix}.\]

(c) Describe the null space (kernel) and the range of $T$ and give the rank and the nullity of $T$

Null Space and Nullity

We fist find the null space of the linear transformation of $T$.
Note that the null space of $T$ is the same as the null space of the matrix $A$.

By definition, the null space is
\[ \calN(T)=\calN(A)=\{\mathbf{x} \in \R^2 \mid A\mathbf{x}=\mathbf{0}\}.\] So the null space is a set of all solutions for the system $A\mathbf{x}=\mathbf{0}$.

To find the solution of the system we consider the augmented matrix and reduce the matrix using the elementary row operations. (The Gauss-Jordan elimination method.)
We have
\begin{align*}
\left[\begin{array}{rr|r}
1 & -1 & 0 \\
1 &1 &0 \\
0 & 1 & 0
\end{array} \right] \xrightarrow{R_2-R_1}
\left[\begin{array}{rr|r}
1 & -1 & 0 \\
0 &2 &0 \\
0 & 1 & 0
\end{array} \right]\\[6pt] \xrightarrow[\text{then} R_2\leftrightarrow R_3] {\substack{R_1+R_3 \\ R_2-2R_1}}
\left[\begin{array}{rr|r}
1 & 0 & 0 \\
0 &1 &0 \\
0 & 0 & 0
\end{array} \right].
\end{align*}

Thus the system has only zero solution
\[x_1=0, x_2=0.\] Therefore we obtained
\[\calN(T)=\calN(A)=\left \{ \begin{bmatrix}
0 \\
0
\end{bmatrix} \right \}.\]

Since the nullity is the dimension of the null space, we see that the nullity of $T$ is $0$ since the dimension of the zero vector space is $0$.

Range and Rank

Next, we find the range of $T$. Note that the range of the linear transformation $T$ is the same as the range of the matrix $A$.
We describe the range by giving its basis.

The range of $A$ is the columns space of $A$. Thus it is spanned by columns
\[\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
1
\end{bmatrix}.\]

From the above reduction of the augmented matrix, we see that these vectors are linearly independent, thus a basis for the range. (Basically, this is the leading 1 method.)
Hence we have
\[\calR(T)=\calR(A)=\Span \left\{\,\begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
1
\end{bmatrix} \,\right\}\] and
\[\left\{\, \begin{bmatrix}
1 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
-1 \\
1 \\
1
\end{bmatrix} \,\right\}\] is a basis for $\calR(T)$.

The rank of $T$ is the dimension of the range $\calR(T)$.
Thus the rank of $T$ is $2$.

Remark that we obtained that the nullity of $T$ is $0$ and the rank of $T$ is $2$. This agrees with the rank-nullity theorem
\[(\text{rank of } T)+ (\text{nullity of } T)=2.\]

More Problems about Linear Transformations

Additional problems about linear transformations are collected on the following page:
Linear Transformation from $\R^n$ to $\R^m$


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Show the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis

Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient. Let...

Close