Linear Properties of Matrix Multiplication and the Null Space of a Matrix

Problems and solutions in Linear Algebra

Problem 155

Let $A$ be an $m \times n$ matrix.
Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$.
Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$.

Then find $A\mathbf{w}$.
 
LoadingAdd to solve later

Sponsored Links


Hint.

Recall that the null space of an $m\times n$ matrix $A$ is a subspace of $\R^n$ defined by
\[ \calN(A)=\{ \mathbf{x}\in \R^n \mid A\mathbf{x}=\mathbf{0}_m\}.\] Here $\mathbf{0}_m$ is the $m$-dimensional zero vector in $\R^m$.

Solution.

Since $\mathbf{u}, \mathbf{v} \in \calN(A)$, we have
\[A\mathbf{u}=\mathbf{0}_m \text{ and } A\mathbf{v}=\mathbf{0}_m,\] where $\mathbf{0}_m$ is the $m$-dimensional zero vector in $\R^m$.

Now using the properties of the matrix multiplication, we have
\begin{align*}
A\mathbf{w}&=A(3\mathbf{u}-5\mathbf{v})\\
&=A(3\mathbf{u})+A(-5\mathbf{v})\\
&=3A\mathbf{u}-5A\mathbf{v}\\
&=3\mathbf{0}_m-5\mathbf{0}_m=\mathbf{0}_m.
\end{align*}
Therefore we obtained
\[A\mathbf{w}=\mathbf{0}_m\in \R^m.\]

Remark.

Note that a map $T:\R^n \to \R^m$ defined by $T(\mathbf{x})=A\mathbf{x}$, where $A$ is an $m\times n$ matrix is a linear transformation.
That is the map $T$ satisfies:

  1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for any $\mathbf{u}, \mathbf{v} \in \R^n$, and
  2. $T(c\mathbf{v})=cT(\mathbf{v})$ for any $\mathbf{v}\in \R^n$ and $c \in \R$.

From this point of view, the above problem can be classified into a problem of linear transformation.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Dimension of Null Spaces of Similar Matrices are the SameDimension of Null Spaces of Similar Matrices are the Same Suppose that $n\times n$ matrices $A$ and $B$ are similar. Then show that the nullity of $A$ is equal to the nullity of $B$. In other words, the dimension of the null space (kernel) $\calN(A)$ of $A$ is the same as the dimension of the null space $\calN(B)$ of […]
  • Find a Linear Transformation Whose Image (Range) is a Given SubspaceFind a Linear Transformation Whose Image (Range) is a Given Subspace Let $V$ be the subspace of $\R^4$ defined by the equation \[x_1-x_2+2x_3+6x_4=0.\] Find a linear transformation $T$ from $\R^3$ to $\R^4$ such that the null space $\calN(T)=\{\mathbf{0}\}$ and the range $\calR(T)=V$. Describe $T$ by its matrix […]
  • Basis For Subspace Consisting of Matrices Commute With a Given Diagonal MatrixBasis For Subspace Consisting of Matrices Commute With a Given Diagonal Matrix Let $V$ be the vector space of all $3\times 3$ real matrices. Let $A$ be the matrix given below and we define \[W=\{M\in V \mid AM=MA\}.\] That is, $W$ consists of matrices that commute with $A$. Then $W$ is a subspace of $V$. Determine which matrices are in the subspace $W$ […]
  • Subspace Spanned By Cosine and Sine FunctionsSubspace Spanned By Cosine and Sine Functions Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$. Define the map $f:\R^2 \to \calF[0, 2\pi]$ by \[\left(\, f\left(\, \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta […]
  • Intersection of Two Null Spaces is Contained in Null Space of Sum of Two MatricesIntersection of Two Null Spaces is Contained in Null Space of Sum of Two Matrices Let $A$ and $B$ be $n\times n$ matrices. Then prove that \[\calN(A)\cap \calN(B) \subset \calN(A+B),\] where $\calN(A)$ is the null space (kernel) of the matrix $A$.   Definition. Recall that the null space (or kernel) of an $n \times n$ matrix […]
  • The Null Space (the Kernel) of a Matrix is a Subspace of $\R^n$The Null Space (the Kernel) of a Matrix is a Subspace of $\R^n$ Let $A$ be an $m \times n$ real matrix. Then the null space $\calN(A)$ of $A$ is defined by \[ \calN(A)=\{ \mathbf{x}\in \R^n \mid A\mathbf{x}=\mathbf{0}_m\}.\] That is, the null space is the set of solutions to the homogeneous system $A\mathbf{x}=\mathbf{0}_m$. Prove that the […]
  • Idempotent Matrices are DiagonalizableIdempotent Matrices are Diagonalizable Let $A$ be an $n\times n$ idempotent matrix, that is, $A^2=A$. Then prove that $A$ is diagonalizable.   We give three proofs of this problem. The first one proves that $\R^n$ is a direct sum of eigenspaces of $A$, hence $A$ is diagonalizable. The second proof proves […]
  • Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null SpaceQuiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space (a) Let $A=\begin{bmatrix} 1 & 2 & 1 \\ 3 &6 &4 \end{bmatrix}$ and let \[\mathbf{a}=\begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}, \qquad \mathbf{b}=\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \qquad \mathbf{c}=\begin{bmatrix} 1 \\ 1 […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$

Define the map $T:\R^2 \to \R^3$ by $T \left ( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right )=\begin{bmatrix} x_1-x_2 \\ x_1+x_2 \\...

Close