# Linear Properties of Matrix Multiplication and the Null Space of a Matrix ## Problem 155

Let $A$ be an $m \times n$ matrix.
Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$.
Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$.

Then find $A\mathbf{w}$. Add to solve later

Contents

## Hint.

Recall that the null space of an $m\times n$ matrix $A$ is a subspace of $\R^n$ defined by
$\calN(A)=\{ \mathbf{x}\in \R^n \mid A\mathbf{x}=\mathbf{0}_m\}.$ Here $\mathbf{0}_m$ is the $m$-dimensional zero vector in $\R^m$.

## Solution.

Since $\mathbf{u}, \mathbf{v} \in \calN(A)$, we have
$A\mathbf{u}=\mathbf{0}_m \text{ and } A\mathbf{v}=\mathbf{0}_m,$ where $\mathbf{0}_m$ is the $m$-dimensional zero vector in $\R^m$.

Now using the properties of the matrix multiplication, we have
\begin{align*}
A\mathbf{w}&=A(3\mathbf{u}-5\mathbf{v})\\
&=A(3\mathbf{u})+A(-5\mathbf{v})\\
&=3A\mathbf{u}-5A\mathbf{v}\\
&=3\mathbf{0}_m-5\mathbf{0}_m=\mathbf{0}_m.
\end{align*}
Therefore we obtained
$A\mathbf{w}=\mathbf{0}_m\in \R^m.$

## Remark.

Note that a map $T:\R^n \to \R^m$ defined by $T(\mathbf{x})=A\mathbf{x}$, where $A$ is an $m\times n$ matrix is a linear transformation.
That is the map $T$ satisfies:

1. $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for any $\mathbf{u}, \mathbf{v} \in \R^n$, and
2. $T(c\mathbf{v})=cT(\mathbf{v})$ for any $\mathbf{v}\in \R^n$ and $c \in \R$.

From this point of view, the above problem can be classified into a problem of linear transformation. Add to solve later

### More from my site

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### Range, Null Space, Rank, and Nullity of a Linear Transformation from $\R^2$ to $\R^3$

Define the map $T:\R^2 \to \R^3$ by \$T \left ( \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right )=\begin{bmatrix} x_1-x_2 \\ x_1+x_2 \\...

Close