# Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue

## Problem 476

Let
$A=\begin{bmatrix} 1 & 2 & 1 \\ -1 &4 &1 \\ 2 & -4 & 0 \end{bmatrix}.$ The matrix $A$ has an eigenvalue $2$.
Find a basis of the eigenspace $E_2$ corresponding to the eigenvalue $2$.

(The Ohio State University, Linear Algebra Final Exam Problem)

## Solution.

By definition, the eigenspace $E_2$ corresponding to the eigenvalue $2$ is the null space of the matrix $A-2I$.
That is, we have
$E_2=\calN(A-2I).$

We reduce the matrix $A-2I$ by elementary row operations as follows.
\begin{align*}
&A-2I=\begin{bmatrix}
-1 & 2 & 1 \\
-1 &2 &1 \\
2 & -4 & -2
\end{bmatrix}\6pt] &\xrightarrow{\substack{R_2-R_1\\R_3+2R_1}} \begin{bmatrix} -1 & 2 & 1 \\ 0 &0 &0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{-R_1} \begin{bmatrix} 1 & -2 & -1 \\ 0 &0 &0 \\ 0 & 0 & 0 \end{bmatrix}. \end{align*} Thus, the solutions \mathbf{x} of (A-2I)\mathbf{x}=\mathbf{0} satisfy x_1=2x_2+x_3. Thus, the null space \calN(A-2I) consists of vectors \[\mathbf{x}=\begin{bmatrix} 2x_2+x_3 \\ x_2 \\ x_3 \end{bmatrix}=x_2\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}+x_3\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} for any scalars $x_2, x_3$.

Hence we have
\begin{align*}
E_2=\calN(A-2I)=\Span\left(\, \begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}, \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix} \,\right).
\end{align*}

It is straightforward to see that the vectors $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ are linearly independent, hence they form a basis of $E_2$.

Thus, a basis of $E_2$ is
$\left\{\, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \,\right\}.$

## Final Exam Problems and Solution. (Linear Algebra Math 2568 at the Ohio State University)

This problem is one of the final exam problems of Linear Algebra course at the Ohio State University (Math 2568).

The other problems can be found from the links below.

### More from my site

• Given All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces $E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […] • Maximize the Dimension of the Null Space of A-aI Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.$ Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
• Find Bases for the Null Space, Range, and the Row Space of a $5\times 4$ Matrix Let $A=\begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 &1 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 2 & 2 & 2\\ 0 & 0 & 0 & 0 \end{bmatrix}.$ (a) Find a basis for the null space $\calN(A)$. (b) Find a basis of the range $\calR(A)$. (c) Find a basis of the […]
• Diagonalize the 3 by 3 Matrix Whose Entries are All One Diagonalize the matrix $A=\begin{bmatrix} 1 & 1 & 1 \\ 1 &1 &1 \\ 1 & 1 & 1 \end{bmatrix}.$ Namely, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$. (The Ohio State University, Linear Algebra Final Exam […]
• Find a Basis of the Vector Space of Polynomials of Degree 2 or Less Among Given Polynomials Let $P_2$ be the vector space of all polynomials with real coefficients of degree $2$ or less. Let $S=\{p_1(x), p_2(x), p_3(x), p_4(x)\}$, where \begin{align*} p_1(x)&=-1+x+2x^2, \quad p_2(x)=x+3x^2\\ p_3(x)&=1+2x+8x^2, \quad p_4(x)=1+x+x^2. \end{align*} (a) Find […]
• Orthonormal Basis of Null Space and Row Space Let $A=\begin{bmatrix} 1 & 0 & 1 \\ 0 &1 &0 \end{bmatrix}$. (a) Find an orthonormal basis of the null space of $A$. (b) Find the rank of $A$. (c) Find an orthonormal basis of the row space of $A$. (The Ohio State University, Linear Algebra Exam […]
• Diagonalize a 2 by 2 Matrix if Diagonalizable Determine whether the matrix $A=\begin{bmatrix} 1 & 4\\ 2 & 3 \end{bmatrix}$ is diagonalizable. If so, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$. (The Ohio State University, Linear Algebra Final Exam […]
• Find an Orthonormal Basis of the Range of a Linear Transformation Let $T:\R^2 \to \R^3$ be a linear transformation given by $T\left(\, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \,\right) = \begin{bmatrix} x_1-x_2 \\ x_2 \\ x_1+ x_2 \end{bmatrix}.$ Find an orthonormal basis of the range of $T$. (The Ohio […]

### 9 Responses

1. 06/28/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

2. 06/28/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

3. 08/02/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

4. 09/13/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

5. 10/05/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

6. 10/16/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

7. 10/16/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

8. 10/16/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

9. 11/20/2017

[…] Find a Basis of the Eigenspace Corresponding to a Given Eigenvalue […]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Find All the Eigenvalues of 4 by 4 Matrix

Find all the eigenvalues of the matrix \[A=\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 &0 & 1...

Close