Linear Independent Continuous Functions

Linear Algebra Problems and Solutions

Problem 158

Let $C[3, 10]$ be the vector space consisting of all continuous functions defined on the interval $[3, 10]$. Consider the set
\[S=\{ \sqrt{x}, x^2 \}\] in $C[3,10]$.

Show that the set $S$ is linearly independent in $C[3,10]$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

Note that the zero vector in $C[3,10]$ is the zero function $\theta(x)=0$.
Let us consider a linear combination
\[a_1\sqrt{x}+a_2x^2=\theta(x)=0.\]

We want to show that $a_1=a_2=0$.
Since this equality holds for any value of $x$ between $3$ and $10$, letting $x=4$ and $x=9$ yields the system of linear equations
\begin{align*}
2a_1+4a_2=0\\
3a_1+81a_2=0.
\end{align*}
Solving this system, we obtain $a_1=a_2=0$, and hence the set $S$ is linearly independent.

Comment.

We could have taken any two values between $3$ and $10$ for $x$ instead of $4$ and $9$, but the choice $x=4$ and $x=9$ made solving the system easier.
Also, we took two values for $x$ because we had two unknowns $a_1$, $a_2$, and thus we needed two equations to determine these unknown.

For a similar problem, show that the set $\{\sqrt{x}, x^2, x\}$ in the vector space $C[1, 10]$ is linearly independent.
In this case, there will be three unknowns that you want to show to be zero.
So you need to take three values for $x$.
A natural choice will be $x=1, 4, 9$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Cosine and Sine Functions are Linearly IndependentCosine and Sine Functions are Linearly Independent Let $C[-\pi, \pi]$ be the vector space of all continuous functions defined on the interval $[-\pi, \pi]$. Show that the subset $\{\cos(x), \sin(x)\}$ in $C[-\pi, \pi]$ is linearly independent.   Proof. Note that the zero vector in the vector space $C[-\pi, \pi]$ is […]
  • Basis and Dimension of the Subspace of All Polynomials of Degree 4 or Less Satisfying Some Conditions.Basis and Dimension of the Subspace of All Polynomials of Degree 4 or Less Satisfying Some Conditions. Let $P_4$ be the vector space consisting of all polynomials of degree $4$ or less with real number coefficients. Let $W$ be the subspace of $P_2$ by \[W=\{ p(x)\in P_4 \mid p(1)+p(-1)=0 \text{ and } p(2)+p(-2)=0 \}.\] Find a basis of the subspace $W$ and determine the dimension of […]
  • Determine Whether Each Set is a Basis for $\R^3$Determine Whether Each Set is a Basis for $\R^3$ Determine whether each of the following sets is a basis for $\R^3$. (a) $S=\left\{\, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 4 \end{bmatrix} […]
  • Any Vector is a Linear Combination of Basis Vectors UniquelyAny Vector is a Linear Combination of Basis Vectors Uniquely Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as \[\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,\] where $c_1, c_2, c_3$ are […]
  • Linear Independent Vectors and the Vector Space Spanned By ThemLinear Independent Vectors and the Vector Space Spanned By Them Let $V$ be a vector space over a field $K$. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ be linearly independent vectors in $V$. Let $U$ be the subspace of $V$ spanned by these vectors, that is, $U=\Span \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. Let […]
  • 12 Examples of Subsets that Are Not Subspaces of Vector Spaces12 Examples of Subsets that Are Not Subspaces of Vector Spaces Each of the following sets are not a subspace of the specified vector space. For each set, give a reason why it is not a subspace. (1) \[S_1=\left \{\, \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \R^3 \quad \middle | \quad x_1\geq 0 \,\right \}\] in […]
  • Show the Subset of the Vector Space of Polynomials is a Subspace and Find its BasisShow the Subset of the Vector Space of Polynomials is a Subspace and Find its Basis Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient. Let $W$ be the following subset of $P_3$. \[W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.\] Here $p'(x)$ is the first derivative of $p(x)$ and […]
  • Find a Basis For the Null Space of a Given $2\times 3$ MatrixFind a Basis For the Null Space of a Given $2\times 3$ Matrix Let \[A=\begin{bmatrix} 1 & 1 & 0 \\ 1 &1 &0 \end{bmatrix}\] be a matrix. Find a basis of the null space of the matrix $A$. (Remark: a null space is also called a kernel.)   Solution. The null space $\calN(A)$ of the matrix $A$ is by […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Vector Space of Polynomials and Coordinate Vectors

Let $P_2$ be the vector space of all polynomials of degree two or less. Consider the subset in $P_2$ \[Q=\{...

Close