The Additive Group of Rational Numbers and The Multiplicative Group of Positive Rational Numbers are Not Isomorphic

Group Theory Problems and Solutions

Problem 510

Let $(\Q, +)$ be the additive group of rational numbers and let $(\Q_{ > 0}, \times)$ be the multiplicative group of positive rational numbers.

Prove that $(\Q, +)$ and $(\Q_{ > 0}, \times)$ are not isomorphic as groups.

LoadingAdd to solve later


Suppose, towards a contradiction, that there is a group isomorphism
\[\phi:(\Q, +) \to (\Q_{ > 0}, \times).\]

Then since $\phi$ is in particular surjective, there exists $r\in \Q$ such that $\phi(r)=2$.
As $r$ is a rational number, so is $r/2$.

It follows that we have
2&=\phi(r)=\phi\left(\, \frac{r}{2}+\frac{r}{2} \,\right)\\
&=\phi\left(\, \frac{r}{2} \,\right)\cdot\phi\left(\, \frac{r}{2} \,\right) &&\text{ because $\phi$ is a homomorphism}\\
&=\phi\left(\, \frac{r}{2} \,\right)^2.

It yields that
\[\phi\left(\, \frac{r}{2} \,\right)=\pm \sqrt{2}.\]

However, this is a contradiction since $\phi\left(\, \frac{r}{2} \,\right)$ must be a positive rational number, yet $\sqrt{2}$ is not a rational number.

We conclude that there is no such group isomorphism, and hence the groups $(\Q, +)$ and $(\Q_{ > 0}\times)$ are not isomorphic as groups.

LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Abelian Group problems and solutions
The Existence of an Element in an Abelian Group of Order the Least Common Multiple of Two Elements

Let $G$ be an abelian group. Let $a$ and $b$ be elements in $G$ of order $m$ and $n$, respectively....