Normal Subgroup Whose Order is Relatively Prime to Its Index Problem 621

Let $G$ be a finite group and let $N$ be a normal subgroup of $G$.
Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$.

(a) Prove that $N=\{a\in G \mid a^n=e\}$.

(b) Prove that $N=\{b^m \mid b\in G\}$. Add to solve later

Proof.

Note that as $n$ and $m$ are relatively prime integers, there exits $s, t\in \Z$ such that
$sn+tm=1. \tag{*}$ Also, note that as the order of the group $G/N$ is $|G/N|=|G:N|=m$, we have
$g^mN=(gN)^m=N$ for any $g \in G$ by Lagrange’ theorem, and thus
$g^m\in N \tag{**}.$

(a) Prove that $N=\{a\in G \mid a^n=e\}$.

Suppose $a\in \{a\in G \mid a^n=e\}$. Then we have $a^n=e$.
It follows that
\begin{align*}
a \stackrel{(*)}{=} a^{sn+tm}= a^{sn}a^{tm}=a^{tm}=(a^t)^m\in N
\end{align*}
by (**).
This proves that $\{a\in G \mid a^n=e\} \subset N$.

On the other hand, if $a\in N$, then we have $a^n=e$ as $n$ is the order of the group $N$.
Hence $N\subset \{a\in G \mid a^n=e\}$.

Putting together these inclusions yields that $N=\{a\in G \mid a^n=e\}$ as required.

(b) Prove that $N=\{b^m \mid b\in G\}$.

Let $b^m \in \{b^m \mid b\in G\}$. Then by (**), we know that $b^m\in N$.
Thus, we have $\{b^m \mid b\in G\}\subset N$.

On the other hand, let $a\in N$. Then we have $a^n=e$ as $n=|N|$.
Hence it follows that
\begin{align*}
a \stackrel{(*)}{=} a^{sn+tm}= a^{sn}a^{tm}=a^{tm}=b^m,
\end{align*}
where we put $b:=a^t$.
This implies that $a\in \{b^m \mid b\in G\}$, and hence we have $N \subset \{b^m \mid b\in G\}$.

So we see that $N=\{b^m \mid b\in G\}$ by these two inclusions. Add to solve later

3 Responses

1. Lalitha says:

I have a doubt, can someone help me!!!
What is the meaning of the below step & how did it come ?
g^m N=(gN)m=N
and how a^sn disappered in the below step ?
a=(∗)asn+tm=asnatm=atm=(at)m∈N

Thanks 🙂

• Yu says:

Dear Lalitha,

Recall that if the order of a group $G$ is $n$, then for any element $g$ in $G$, we have $g^n=e$, where $e$ is the identity element in $G$.

Now, for your first question, the group is $G/N$ and its order is $m$. Note that $gN$ is an element in $G/N$. Thus, $(gN)^m$ is the identity element in $G/N$, which is $N$. So we have $(gN)^m=N$.

For the second question, $a^{sn}=(a^n)^s=e^s=e$. Thus $a^{sn}=e$ and that’s why it dissapeared.

• Lalitha says:

Thanks for your explanation

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory Every Cyclic Group is Abelian

Prove that every cyclic group is abelian.

Close