Common Eigenvector of Two Matrices $A, B$ is Eigenvector of $A+B$ and $AB$.

Ohio State University exam problems and solutions in mathematics

Problem 382

Let $\lambda$ be an eigenvalue of $n\times n$ matrices $A$ and $B$ corresponding to the same eigenvector $\mathbf{x}$.

(a) Show that $2\lambda$ is an eigenvalue of $A+B$ corresponding to $\mathbf{x}$.

(b) Show that $\lambda^2$ is an eigenvalue of $AB$ corresponding to $\mathbf{x}$.

(The Ohio State University, Linear Algebra Final Exam Problem)
 
LoadingAdd to solve later

Proof.

(a) Show that $2\lambda$ is an eigenvalue of $A+B$ corresponding to $\mathbf{x}$.

Since $\lambda$ is an eigenvalue of $A$ and $B$, and $\mathbf{x}$ is a corresponding eigenvector, we have
\[A\mathbf{x}=\lambda \mathbf{x} \text{ and } B\mathbf{x}=\lambda \mathbf{x} \tag{*}.\] Then we compute
\begin{align*}
(A+B)\mathbf{x}&=A\mathbf{x}+B\mathbf{x}\\
&=\lambda \mathbf{x}+ \lambda \mathbf{x} && \text {by (*)}\\
&=2\lambda \mathbf{x}.
\end{align*}

Since $\mathbf{x}$ is an eigenvector, it is a nonzero vector by definition.
Hence from the equality
\[(A+B)\mathbf{x}=2\lambda \mathbf{x},\] we see that $2\lambda$ is an eigenvalue of the matrix $A+B$ and $\mathbf{x}$ is an associated eigenvector.

(b) Show that $\lambda^2$ is an eigenvalue of $AB$ corresponding to $\mathbf{x}$.

We have
\begin{align*}
(AB)\mathbf{x}&=A(B\mathbf{x})\\
&=A(\lambda \mathbf{x}) && \text{by (*)}\\
&=\lambda (A\mathbf{x})\\
&=\lambda (\lambda \mathbf{x}) && \text{by (*)}\\
&=\lambda^2 \mathbf{x}.
\end{align*}

Since $\mathbf{x}$ is a nonzero vector as it is an eigenvector, it follows from the equality
\[(AB)\mathbf{x}=\lambda^2 \mathbf{x}\] that $\lambda^2$ is an eigenvalue of the matrix $AB$ and $\mathbf{x}$ is a corresponding eigenvector.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear Algebra exam problems and solutions at University of California, Berkeley
Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like.

Consider the matrix \[A=\begin{bmatrix} 3/2 & 2\\ -1& -3/2 \end{bmatrix} \in M_{2\times 2}(\R).\] (a) Find the eigenvalues and corresponding eigenvectors...

Close