Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like.

Linear Algebra exam problems and solutions at University of California, Berkeley

Problem 381

Consider the matrix
\[A=\begin{bmatrix}
3/2 & 2\\
-1& -3/2
\end{bmatrix} \in M_{2\times 2}(\R).\]

(a) Find the eigenvalues and corresponding eigenvectors of $A$.

(b) Show that for $\mathbf{v}=\begin{bmatrix}
1 \\
0
\end{bmatrix}\in \R^2$, we can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we like.

(University of California, Berkeley, Linear Algebra Final Exam Problem)
 
LoadingAdd to solve later

Proof.

(a) Find the eigenvalues and corresponding eigenvectors of $A$.

To find the eigenvalues of $A$, we compute the characteristic polynomial $p(t)$ of $A$.
We have
\begin{align*}
p(t)&=\det(A-tI)\\
&=\begin{vmatrix}
3/2-t & 2\\
-1& -3/2-t
\end{vmatrix}\\
&=t^2-1/4.
\end{align*}
Since the eigenvalues are roots of the characteristic polynomials, the eigenvalues of $A$ are $\pm 1/2$.

Next we find the eigenvectors corresponding to eigenvalue $1/2$.
These are the solutions of $(A-\frac{1}{2}I)\mathbf{x}=\mathbf{0}$.
We have
\begin{align*}
A-\frac{1}{2}I=\begin{bmatrix}
1 & 2\\
-1& -2
\end{bmatrix}
\xrightarrow{R_2+R_1}
\begin{bmatrix}
1 & 2\\
0& 0
\end{bmatrix}.
\end{align*}
Thus, the solution $\mathbf{x}$ satisfies $x_1=-2x_2$, and the eigenvectors are
\[\mathbf{x}=x_2\begin{bmatrix}
-2 \\
1
\end{bmatrix},\] where $x_2$ is a nonzero scalar.

Similarly, we find the eigenvectors corresponding to the eigenvalue $-1/2$.
We solve $(A+\frac{1}{2}I)\mathbf{x}=\mathbf{0}$.
We have
\begin{align*}
A+\frac{1}{2}I=\begin{bmatrix}
2 & 2\\
-1& -1
\end{bmatrix}
\xrightarrow[\text{then } R_2+R_1]{\frac{1}{2}R_1}
\begin{bmatrix}
1 & 1\\
0& 0
\end{bmatrix}.
\end{align*}
Thus, we have $x_1=-x_2$, and the eigenvectors are
\[\mathbf{x}=x_2\begin{bmatrix}
-1 \\
1
\end{bmatrix},\] where $x_2$ is a nonzero scalar.

(b) We can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we like.

We express the vector $\mathbf{v}=\begin{bmatrix}
1 \\
0
\end{bmatrix}$ as a linear combination of eigenvectors $\begin{bmatrix}
-2 \\
1
\end{bmatrix}$ and $\begin{bmatrix}
-1 \\
1
\end{bmatrix}$ corresponding to eigenvalues $1/2$ and $-1/2$, respectively.
Let
\[\begin{bmatrix}
1 \\
0
\end{bmatrix}=c_1\begin{bmatrix}
-2 \\
1
\end{bmatrix}+c_2\begin{bmatrix}
-1 \\
1
\end{bmatrix}\] for some scalars $c_1, c_2$.
Solving this for $c_1, c_2$, we find that $c_1=-1$ and $c_2=1$, and thus we have
\[\begin{bmatrix}
1 \\
0
\end{bmatrix}=-\begin{bmatrix}
-2 \\
1
\end{bmatrix}+\begin{bmatrix}
-1 \\
1
\end{bmatrix}.\] Then for any positive integer $n$, we have
\begin{align*}
A^n\begin{bmatrix}
1 \\
0
\end{bmatrix}&=-A^n\begin{bmatrix}
-2 \\
1
\end{bmatrix}+A^n\begin{bmatrix}
-1 \\
1
\end{bmatrix}\\
&=-\left(\, \frac{1}{2} \,\right)^n\begin{bmatrix}
-2 \\
1
\end{bmatrix}+\left(\, -\frac{1}{2} \,\right)^n\begin{bmatrix}
-1 \\
1
\end{bmatrix}\\
&=\left(\, \frac{1}{2} \,\right)^n\begin{bmatrix}
2-(-1)^n \\
-1+(-1)^n
\end{bmatrix}
\end{align*}
Note that in the second equality we used the following fact: If $A\mathbf{x}=\lambda \mathbf{x}$, then $A^n\mathbf{x}=\lambda^n \mathbf{x}$.

Then the length is
\begin{align*}
\left \| A^n\begin{bmatrix}
1 \\
0
\end{bmatrix}\right \|&=\left(\, \frac{1}{2} \,\right)^n \sqrt{\left(\, 2-(-1)^n \,\right)^2+\left(\, -1+(-1)^n \,\right)^2}\\
& \leq \left(\, \frac{1}{2} \,\right)^n \sqrt{3^2+2^2}\\
&= \sqrt{13}\left(\, \frac{1}{2} \,\right)^n \to 0 \text{ as $n$ tends to infinity}.
\end{align*}
Therefore, we can choose $n$ large enough so that the length $\|A^n\mathbf{v}\|$ is as small as we wish.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Math exam problems and solutions at Harvard University
Determinant of Matrix whose Diagonal Entries are 6 and 2 Elsewhere

Find the determinant of the following matrix \[A=\begin{bmatrix} 6 & 2 & 2 & 2 &2 \\ 2 & 6...

Close