# Quiz 11. Find Eigenvalues and Eigenvectors/ Properties of Determinants

## Problem 363

**(a)** Find all the eigenvalues and eigenvectors of the matrix

\[A=\begin{bmatrix}

3 & -2\\

6& -4

\end{bmatrix}.\]

**(b)** Let

\[A=\begin{bmatrix}

1 & 0 & 3 \\

4 &5 &6 \\

7 & 0 & 9

\end{bmatrix} \text{ and } B=\begin{bmatrix}

2 & 0 & 0 \\

0 & 3 &0 \\

0 & 0 & 4

\end{bmatrix}.\]
Then find the value of

\[\det(A^2B^{-1}A^{-2}B^2).\]
(For part (b) without computation, you may assume that $A$ and $B$ are invertible matrices.)

Sponsored Links

Contents

## (a) Solution.

To determine eigenvalues of $A$, we compute the determinant of $A-\lambda I$.

We have

\begin{align*}

\det(A-\lambda I)&=\begin{vmatrix}

3-\lambda & -2\\

6& -4-\lambda

\end{vmatrix}\\

&=(3-\lambda)(-4-\lambda)+12\\

&=\lambda^2+\lambda=\lambda(\lambda+1).

\end{align*}

The eigenvalues are solutions of $\det(A-\lambda I)=0$, hence eigenvalues of $A$ are $0, -1$.

Next, we find the eigenvector corresponding to the eigenvalue $\lambda=0$.

Eigenvectors $\mathbf{x}$ are nonzero solutions of $(A-0I)\mathbf{x}=\mathbf{0}$.

Thus, we solve $A\mathbf{x}=\mathbf{0}$. The augmented matrix of the system is

\begin{align*}

\left[\begin{array}{rr|r}

3 & -2 & 0 \\

6 & -4 & 0

\end{array} \right]
\xrightarrow{R_2-2R_1}

\left[\begin{array}{rr|r}

3 & -2 & 0 \\

0 & 0 & 0

\end{array} \right]
\xrightarrow{\frac{1}{3}R_1}

\left[\begin{array}{rr|r}

1 & -2/3 & 0 \\

0 & 0 & 0

\end{array} \right].

\end{align*}

Thus, if $\mathbf{x}=\begin{bmatrix}

x_1 \\

x_2

\end{bmatrix}$ is a solution, then $x_1=\frac{2}{3}x_2$, hence

\[\mathbf{x}=x_2\begin{bmatrix}

2/3 \\

1

\end{bmatrix}\]
is an eigenvector corresponding to $\lambda=0$ for any nonzero scalar $x_2$.

Finally, we find the eigenvectors corresponding to the eigenvalue $\lambda=-1$.

In this case we need to solve $(A-(-1)I)\mathbf{x}=\mathbf{0}$.

The augmented matrix is

\begin{align*}

\left[\begin{array}{rr|r}

4 & -2 & 0 \\

6 & -3 & 0

\end{array} \right]
\xrightarrow[\frac{1}{3}R_2]{\frac{1}{2}R_1} \left[\begin{array}{rr|r}

2 & -1 & 0 \\

2 & -1 & 0

\end{array} \right]
\xrightarrow{R_2-R_1}

\left[\begin{array}{rr|r}

2 & -1 & 0 \\

0 & 0 & 0

\end{array} \right]
\xrightarrow{\frac{1}{2}R_1}

\left[\begin{array}{rr|r}

1 & -1/2 & 0 \\

0 & 0 & 0

\end{array} \right].

\end{align*}

It follows that the eigenvectors associated to $\lambda=-1$ are

\[\mathbf{x}=x_2\begin{bmatrix}

1/2 \\

1

\end{bmatrix}\]
for any nonzero scalar $x_2$.

## (b) Solution.

We use the following two properties of determinants.

Let $C$ and $D$ be $n\times n$ matrices. Then we have

\begin{align*}

\det(CD)&=\det(C)\det(D)

\end{align*}

and if $C$ is invertible, then

\[\det(C^{-1})=\det(C)^{-1}=\frac{1}{\det(C)}.\]

Using the properties of determinants, we compute

\begin{align*}

&\det(A^2B^{-1}A^{-2}B^2)\\&=\det(A)^2\det(B)^{-1}\det(A)^{-2}\det(B)^2\\

&=\det(A)^2\det(A)^{-2}\det(B)^{-1}\det(B)^2 && \text{(determinants are just numbers)}\\

&=\det(B).

\end{align*}

Hence it suffices to find the determinant of the matrix $B$.

Since the matrix $B$ is an upper triangular matrix, its determinant is the product of diagonal entries, thus

\[\det(B)=2\cdot 3 \cdot 4=24.\]
As a result, we obtain

\[\det(A^2B^{-1}A^{-2}B^2)=24.\]

## Comment.

These are Quiz 11 problems for Math 2568 (Introduction to Linear Algebra) at OSU in Spring 2017.

### List of Quiz Problems of Linear Algebra (Math 2568) at OSU in Spring 2017

There were 13 weekly quizzes. Here is the list of links to the quiz problems and solutions.

- Quiz 1. Gauss-Jordan elimination / homogeneous system.
- Quiz 2. The vector form for the general solution / Transpose matrices.
- Quiz 3. Condition that vectors are linearly dependent/ orthogonal vectors are linearly independent
- Quiz 4. Inverse matrix/ Nonsingular matrix satisfying a relation
- Quiz 5. Example and non-example of subspaces in 3-dimensional space
- Quiz 6. Determine vectors in null space, range / Find a basis of null space
- Quiz 7. Find a basis of the range, rank, and nullity of a matrix
- Quiz 8. Determine subsets are subspaces: functions taking integer values / set of skew-symmetric matrices
- Quiz 9. Find a basis of the subspace spanned by four matrices
- Quiz 10. Find orthogonal basis / Find value of linear transformation
- Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants
- Quiz 12. Find eigenvalues and their algebraic and geometric multiplicities
- Quiz 13 (Part 1). Diagonalize a matrix.
- Quiz 13 (Part 2). Find eigenvalues and eigenvectors of a special matrix

Add to solve later

Sponsored Links

## 7 Responses

[…] Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants […]

[…] Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants […]

[…] Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants […]

[…] Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants […]

[…] Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants […]

[…] Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants […]

[…] Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants […]