# Quiz 9. Find a Basis of the Subspace Spanned by Four Matrices

## Problem 349

Let $V$ be the vector space of all $2\times 2$ real matrices.

Let $S=\{A_1, A_2, A_3, A_4\}$, where

\[A_1=\begin{bmatrix}

1 & 2\\

-1& 3

\end{bmatrix}, A_2=\begin{bmatrix}

0 & -1\\

1& 4

\end{bmatrix}, A_3=\begin{bmatrix}

-1 & 0\\

1& -10

\end{bmatrix}, A_4=\begin{bmatrix}

3 & 7\\

-2& 6

\end{bmatrix}.\]
Then find a basis for the span $\Span(S)$.

Sponsored Links

Contents

## Solution.

Let $B=\{E_{11}, E_{12}, E_{21}, E_{22}\}$ be the standard basis of $V$, where

\[E_{11}=\begin{bmatrix}

1 & 0\\

0& 0

\end{bmatrix}, E_{12}=\begin{bmatrix}

0 & 1\\

0& 0

\end{bmatrix}, E_{21}=\begin{bmatrix}

0 & 0\\

1& 0

\end{bmatrix}, E_{22}=\begin{bmatrix}

0 & 0\\

0& 1

\end{bmatrix}.\]
We find the coordinate vectors of $A_1, A_2, A_3, A_4$ with respect to the basis $B$.

For the matrix $A_1$, we can write it as a linear combination of basis vectors of $B$ as follows.

We have

\[A_1=1\cdot E_{11}+2E_{12}+(-1)E_{21}+3E_{22}.\]
Hence the coordinate vector of $A_1$ with respect to the basis $B$ is

\[[A_1]_B=\begin{bmatrix}

1 \\

2 \\

-1 \\

3

\end{bmatrix}.\]
Similarly, we obtain

\[[A_2]_B=\begin{bmatrix}

0 \\

-1 \\

1 \\

4

\end{bmatrix}, [A_3]_B=\begin{bmatrix}

-1 \\

0 \\

1 \\

-10

\end{bmatrix}, [A_4]_B=\begin{bmatrix}

3 \\

7 \\

-2 \\

6

\end{bmatrix}.\]

Let

\begin{align*}

T&=\{[A_1]_B, [A_2]_B, [A_3]_B, [A_4]_B\}\\[6pt]
&= \left \{ \,\begin{bmatrix}

1 \\

2 \\

-1 \\

3

\end{bmatrix}, \begin{bmatrix}

0 \\

-1 \\

1 \\

4

\end{bmatrix}, \begin{bmatrix}

-1 \\

0 \\

1 \\

-10

\end{bmatrix}, \begin{bmatrix}

3 \\

7 \\

-2 \\

6

\end{bmatrix} \, \right\}.

\end{align*}

Then $T$ is a subset in $\R^4$.

We find a basis of $\Span(T)$ by the leading $1$-method.

We form a matrix whose columns are vectors in $T$ and reduce it by elementary row operations as follows.

\begin{align*}

\begin{bmatrix}

1 & 0 & -1 & 3 \\

2 &-1 & 0 & 7 \\

-1 & 1 & 1 & -2 \\

3 & 4 & -10 & 6

\end{bmatrix}

\xrightarrow{\substack{R_2-2R_1 \\ R_3+R_1 \\ R_4-3R_1}}

\begin{bmatrix}

1 & 0 & -1 & 3 \\

0 &-1 & 2 & 1 \\

0 & 1 & 0 & 1 \\

0 & 4 & -7 & -3

\end{bmatrix}\\[6pt]
\xrightarrow{R_2 \leftrightarrow R_3}

\begin{bmatrix}

1 & 0 & -1 & 3 \\

0 & 1 & 0 & 1 \\

0 &-1 & 2 & 1 \\

0 & 4 & -7 & -3

\end{bmatrix}

\xrightarrow{\substack{R_3+R_2 \\R_4-4R_2}}

\begin{bmatrix}

1 & 0 & -1 & 3 \\

0 &1 & 0 & 1 \\

0 & 0 & 2 & 2 \\

0 & 0 & -7 & -7

\end{bmatrix}\\[6pt]
\xrightarrow{\substack{\frac{1}{2}R_3 \\ -\frac{1}{7} R_4}}

\begin{bmatrix}

1 & 0 & -1 & 3 \\

0 &1 & 0 & 1 \\

0 & 0 & 1 & 1 \\

0 & 0 & 1 & 1

\end{bmatrix}

\xrightarrow{\substack{R_1+R_3 \\ R_4-R_3}}

\begin{bmatrix}

1 & 0 & 0 & 4 \\

0 &1 & 0 & 1 \\

0 & 0 & 1 & 1 \\

0 & 0 & 0 & 0

\end{bmatrix}.

\end{align*}

The last matrix is in reduced row echelon form and the first three columns contain the leading 1.

Thus the first three vectors of $T$ is a basis of $\Span(T)$.

Hence

\[\{[A_1]_B, [A_2]_B, [A_3]_B\}\]
is a basis of $\Span(T)$.

This yields that

\[\{A_1, A_2, A_3\}\]
is a basis of $\Span(S)$ by the correspondence of coordinate vectors.

## Comment.

These are Quiz 9 problems for Math 2568 (Introduction to Linear Algebra) at OSU in Spring 2017.

### List of Quiz Problems of Linear Algebra (Math 2568) at OSU in Spring 2017

There were 13 weekly quizzes. Here is the list of links to the quiz problems and solutions.

- Quiz 1. Gauss-Jordan elimination / homogeneous system.
- Quiz 2. The vector form for the general solution / Transpose matrices.
- Quiz 3. Condition that vectors are linearly dependent/ orthogonal vectors are linearly independent
- Quiz 4. Inverse matrix/ Nonsingular matrix satisfying a relation
- Quiz 5. Example and non-example of subspaces in 3-dimensional space
- Quiz 6. Determine vectors in null space, range / Find a basis of null space
- Quiz 7. Find a basis of the range, rank, and nullity of a matrix
- Quiz 8. Determine subsets are subspaces: functions taking integer values / set of skew-symmetric matrices
- Quiz 9. Find a basis of the subspace spanned by four matrices
- Quiz 10. Find orthogonal basis / Find value of linear transformation
- Quiz 11. Find eigenvalues and eigenvectors/ Properties of determinants
- Quiz 12. Find eigenvalues and their algebraic and geometric multiplicities
- Quiz 13 (Part 1). Diagonalize a matrix.
- Quiz 13 (Part 2). Find eigenvalues and eigenvectors of a special matrix

Add to solve later

Sponsored Links

## 6 Responses

[…] Quiz 9. Find a basis of the subspace spanned by four matrices […]

[…] Quiz 9. Find a basis of the subspace spanned by four matrices […]

[…] Quiz 9. Find a basis of the subspace spanned by four matrices […]

[…] Quiz 9. Find a basis of the subspace spanned by four matrices […]

[…] Quiz 9. Find a basis of the subspace spanned by four matrices […]

[…] Quiz 9. Find a basis of the subspace spanned by four matrices […]