Let
\[A=\begin{bmatrix}
3 & -12 & 4 \\
-1 &0 &-2 \\
-1 & 5 & -1
\end{bmatrix}.\]
Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.

We first determine all the eigenvalues of the matrix $A$.
The characteristic polynomial $p(t)$ of $A$ is given by
\begin{align*}
p(t)&=\det(A-tI)\\[6pt]
&=\begin{vmatrix}
3-t & -12 & 4 \\
-1 & -t &-2 \\
-1 & 5 & -1-t
\end{vmatrix}.
\end{align*}
Using the first row cofactor expansion, we compute
\begin{align*}
p(t)&=(3-t)\begin{vmatrix}
-t & -2\\
5& -1-t
\end{vmatrix}
-(-12)\begin{vmatrix}
-1 & -2\\
-1& -1-t
\end{vmatrix}+4\begin{vmatrix}
-1 & -t\\
-1& 5
\end{vmatrix}\\[6pt]
&=(3-t)(t^2+t+10)+12(t-1)+4(-5-t)\\
&=-t^3+2t^2+8t-2.
\end{align*}
Therefore the characteristic polynomial of $A$ is
\[p(t)=-t^3+2t^2+8t-2\]
and it can be factored as
\[p(t)=-(t-2)(t-1)(t+1).\]
The roots of the characteristic polynomials are all the eigenvalues of $A$.
Thus, $2, \pm 1$ are the eigenvalues of $A$.

To find the eigenvalues of $A^5$, recall that if $\lambda$ is an eigenvalue of $A$, then $\lambda^5$ is an eigenvalue of $A^5$.
It follows from this fact that $2^5, (-1)^5, 1^5$ are eigenvalues of $A^5$.

Since $A^5$ is a $3\times 3$ matrix, its characteristic polynomial has degree $3$, hence there are at most $3$ distinct eigenvalues of $A^5$.
Because we have found three eigenvalues, $32, -1, 1$, of $A^5$, these are all the eigenvalues of $A^5$.

Recall that a matrix is singular if and only if $\lambda=0$ is an eigenvalue of the matrix.
Since $0$ is not an eigenvalue of $A$, it follows that $A$ is nonsingular, and hence invertible. If $\lambda$ is an eigenvalue of $A$, then $\frac{1}{\lambda}$ is an eigenvalue of the inverse $A^{-1}$.

So $\frac{1}{\lambda}$, $\lambda=2, \pm 1$ are eigenvalues of $A^{-1}$.
As above, the matrix $A^{-1}$ is $3\times 3$, hence it has at most three distinct eigenvalues. We have found $1/2, \pm 1$ are eigenvalues of $A^{-1}$, hence these are all the eigenvalues of $A^{-1}$.

In summary, all the eigenvalues of $A^5$ are $\pm 1, 32$. The matrix $A$ is invertible and all the eigenvalues of $A^{-1}$ are $\pm 1, 1/2$.

Comment.

Do not try to compute $A^5$ and $A^{-1}$ and then find their eigenvalues.
It will be tedious for hand computation.

Find the Inverse Matrix Using the Cayley-Hamilton Theorem Find the inverse matrix of the matrix
\[A=\begin{bmatrix}
1 & 1 & 2 \\
9 &2 &0 \\
5 & 0 & 3
\end{bmatrix}\]
using the Cayley–Hamilton theorem.
Solution.
To use the Cayley-Hamilton theorem, we first compute the characteristic polynomial $p(t)$ of […]

How to Use the Cayley-Hamilton Theorem to Find the Inverse Matrix
Find the inverse matrix of the $3\times 3$ matrix
\[A=\begin{bmatrix}
7 & 2 & -2 \\
-6 &-1 &2 \\
6 & 2 & -1
\end{bmatrix}\]
using the Cayley-Hamilton theorem.
Solution.
To apply the Cayley-Hamilton theorem, we first determine the characteristic […]

Eigenvalues and their Algebraic Multiplicities of a Matrix with a Variable
Determine all eigenvalues and their algebraic multiplicities of the matrix
\[A=\begin{bmatrix}
1 & a & 1 \\
a &1 &a \\
1 & a & 1
\end{bmatrix},\]
where $a$ is a real number.
Proof.
To find eigenvalues we first compute the characteristic polynomial of the […]

Rotation Matrix in Space and its Determinant and Eigenvalues
For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\]
(a) Find the determinant of the matrix $A$.
(b) Show that $A$ is an […]

Find Inverse Matrices Using Adjoint Matrices
Let $A$ be an $n\times n$ matrix.
The $(i, j)$ cofactor $C_{ij}$ of $A$ is defined to be
\[C_{ij}=(-1)^{ij}\det(M_{ij}),\]
where $M_{ij}$ is the $(i,j)$ minor matrix obtained from $A$ removing the $i$-th row and $j$-th column.
Then consider the $n\times n$ matrix […]

Maximize the Dimension of the Null Space of $A-aI$
Let
\[ A=\begin{bmatrix}
5 & 2 & -1 \\
2 &2 &2 \\
-1 & 2 & 5
\end{bmatrix}.\]
Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.
Your score of this problem is equal to that […]

True of False Problems on Determinants and Invertible Matrices
Determine whether each of the following statements is True or False.
(a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$.
(b) If the characteristic polynomial of an $n \times n$ matrix $A$ […]