How to Use the Cayley-Hamilton Theorem to Find the Inverse Matrix

Cayley-Hamilton Theorem Problems and Solutions

Problem 502

Find the inverse matrix of the $3\times 3$ matrix
\[A=\begin{bmatrix}
7 & 2 & -2 \\
-6 &-1 &2 \\
6 & 2 & -1
\end{bmatrix}\] using the Cayley-Hamilton theorem.

 
LoadingAdd to solve later

Solution.

To apply the Cayley-Hamilton theorem, we first determine the characteristic polynomial $p(t)$ of the matrix $A$.
Let $I$ be the $3\times 3$ identity matrix.
We have
\begin{align*}
p(t)&=\det(A-tI)\\
&=\begin{vmatrix}
7-t & 2 & -2 \\
-6 &-1-t &2 \\
6 & 2 & -1-t
\end{vmatrix}\\[6pt] &=(7-t)\begin{vmatrix}
-1-t & 2\\
2& -1-t
\end{vmatrix}
-2\begin{vmatrix}
-6 & 2\\
6& -1-t
\end{vmatrix}+(-2)\begin{vmatrix}
-6 & -1-t\\
6& 2
\end{vmatrix}\\[6pt] &\text{(by the first row cofactor expansion)}\\[6pt] &=-t^3+5t^2-7t+3.
\end{align*}
(You may also use the rule of Sarrus to compute the $3\times 3$ determinant.)

Thus, we have obtained the characteristic polynomial
\[p(t)=-t^3+5t^2-7t+3\] of the matrix $A$.

The Cayley-Hamilton theorem yields that
\[O=p(A)=-A^3+5A^2-7A+3I,\] where $O$ is the $3\times 3$ zero matrix.
(Here, don’t forget to put the identity matrix $I$.)

Rearranging terms, we have
\begin{align*}
&A^3-5A^2+7A=3I\\[6pt] &\Leftrightarrow A(A^2-5A+7I)=3I\\[6pt] &\Leftrightarrow A\left(\frac{1}{3}(A^2-5A+7I)\right)=I.
\end{align*}
Similarly, we have
\[\left(\frac{1}{3}(A^2-5A+7I)\right)A=I.\] It follows from these two equalities that the matrix
\[\frac{1}{3}(A^2-5A+7I)\] is the inverse matrix of $A$.

Therefore, we have
\begin{align*}
A^{-1}&=\frac{1}{3}(A^2-5A+7I)\\[6pt] &=\frac{1}{3}\left(\, \begin{bmatrix}
25 & 8 & -8 \\
-24 &-7 &8 \\
24 & 8 & -7
\end{bmatrix}-5\begin{bmatrix}
7 & 2 & -2 \\
-6 &-1 &2 \\
6 & 2 & -1
\end{bmatrix}+7\begin{bmatrix}
1 & 0 & 0 \\
0 &1 &0 \\
0 & 0 & 1
\end{bmatrix} \,\right)\\[6pt] &=\frac{1}{3}\begin{bmatrix}
-3 & -2 & 2 \\
6 &5 &-2 \\
-6 & -2 & 5
\end{bmatrix}.
\end{align*}

In summary, the inverse matrix of $A$ is
\[A^{-1}=\frac{1}{3}\begin{bmatrix}
-3 & -2 & 2 \\
6 &5 &-2 \\
-6 & -2 & 5
\end{bmatrix}.\]

More Exercise

Test whether you understand how to find the inverse matrix using the Cayley-Hamilton theorem by the next problem.

Problem. Find the inverse matrix of the matrix
\[A=\begin{bmatrix}
1 & 1 & 2 \\
9 &2 &0 \\
5 & 0 & 3
\end{bmatrix}\] using the Cayley–Hamilton theorem.

The solution is given in the post “Find the Inverse Matrix Using the Cayley-Hamilton Theorem“.

More Problems about the Cayley-Hamilton Theorem

Problems about the Cayley-Hamilton theorem and their solutions are collected on the page:

The Cayley-Hamilton Theorem


LoadingAdd to solve later

More from my site

  • Find the Inverse Matrix Using the Cayley-Hamilton TheoremFind the Inverse Matrix Using the Cayley-Hamilton Theorem Find the inverse matrix of the matrix \[A=\begin{bmatrix} 1 & 1 & 2 \\ 9 &2 &0 \\ 5 & 0 & 3 \end{bmatrix}\] using the Cayley–Hamilton theorem.   Solution. To use the Cayley-Hamilton theorem, we first compute the characteristic polynomial $p(t)$ of […]
  • Find All the Eigenvalues of Power of Matrix and Inverse MatrixFind All the Eigenvalues of Power of Matrix and Inverse Matrix Let \[A=\begin{bmatrix} 3 & -12 & 4 \\ -1 &0 &-2 \\ -1 & 5 & -1 \end{bmatrix}.\] Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.   Proof. We first determine all the eigenvalues of the matrix […]
  • Find All Values of $x$ so that a Matrix is SingularFind All Values of $x$ so that a Matrix is Singular Let \[A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}\] be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.   Hint. Use the fact that a matrix is singular if and only […]
  • Eigenvalues and their Algebraic Multiplicities of a Matrix with a VariableEigenvalues and their Algebraic Multiplicities of a Matrix with a Variable Determine all eigenvalues and their algebraic multiplicities of the matrix \[A=\begin{bmatrix} 1 & a & 1 \\ a &1 &a \\ 1 & a & 1 \end{bmatrix},\] where $a$ is a real number.   Proof. To find eigenvalues we first compute the characteristic polynomial of the […]
  • If 2 by 2 Matrices Satisfy $A=AB-BA$, then $A^2$ is Zero MatrixIf 2 by 2 Matrices Satisfy $A=AB-BA$, then $A^2$ is Zero Matrix Let $A, B$ be complex $2\times 2$ matrices satisfying the relation \[A=AB-BA.\] Prove that $A^2=O$, where $O$ is the $2\times 2$ zero matrix.   Hint. Find the trace of $A$. Use the Cayley-Hamilton theorem Proof. We first calculate the […]
  • Maximize the Dimension of the Null Space of $A-aI$Maximize the Dimension of the Null Space of $A-aI$ Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.\] Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]
  • Rotation Matrix in Space and its Determinant and EigenvaluesRotation Matrix in Space and its Determinant and Eigenvalues For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by \[A=\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta &\cos\theta &0 \\ 0 & 0 & 1 \end{bmatrix}.\] (a) Find the determinant of the matrix $A$. (b) Show that $A$ is an […]
  • Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam)Characteristic Polynomial, Eigenvalues, Diagonalization Problem (Princeton University Exam) Let \[\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.\] (a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers? (b) Calculate $A^{2009}$. (Princeton University, […]

You may also like...

1 Response

  1. 07/07/2017

    […] The solution is given in the post “How to use the Cayley-Hamilton Theorem to Find the Inverse Matrix“. […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Introduction to Linear Algebra at the Ohio State University quiz problems and solutions
10 True of False Problems about Nonsingular / Invertible Matrices

10 questions about nonsingular matrices, invertible matrices, and linearly independent vectors. The quiz is designed to test your understanding of...

Close