Find a Value of a Linear Transformation From $\R^2$ to $\R^3$
Problem 142
Let $T:\R^2 \to \R^3$ be a linear transformation such that $T(\mathbf{e}_1)=\mathbf{u}_1$ and $T(\mathbf{e}_2)=\mathbf{u}_2$, where $\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix}, \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}$ are unit vectors of $\R^2$ and
\[\mathbf{u}_1= \begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}, \quad \mathbf{u}_2=\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}.\]
Then find $T\left(\begin{bmatrix}
3 \\
-2
\end{bmatrix}\right)$.
A linear transformation from a vector space $V$ to a vector space $W$ is a map $f:V \to W$ satisfying the following linearity properties:
$f(u+v)=f(u)+f(v)$ for any vectors $u, v \in V$, and
$f(rv)=rf(v)$ for any vector $v \in V$ and any scalar $r$.
Note that the set $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for the vector space $\R^2$.
Thus the vector $\begin{bmatrix}
3 \\
-2
\end{bmatrix}$ can be written as a linear combination of the basis vectors $\mathbf{e}_1, \mathbf{e}_2$.
Solution.
We first express the vector $\begin{bmatrix}
3 \\
-2
\end{bmatrix}$ as a linear combination of $\mathbf{e}_1$ and $\mathbf{e}_2$:
\[ \begin{bmatrix}
3 \\
-2
\end{bmatrix}=3\mathbf{e}_1-2\mathbf{e}_2.\]
Then we have
\begin{align*}
T\left(\begin{bmatrix}
3 \\
-2
\end{bmatrix}\right)
&=T(3\mathbf{e}_1-2\mathbf{e}_2)\\
&=3T(\mathbf{e}_1)-2T(\mathbf{e}_2) \text{ by the linearity of } T\\
&=3\mathbf{u}_1-2\mathbf{u}_2\\
&=3\begin{bmatrix}
-1 \\
0 \\
1
\end{bmatrix}-2\begin{bmatrix}
2 \\
1 \\
0
\end{bmatrix}\\
&=\begin{bmatrix}
-7 \\
-2 \\
3
\end{bmatrix}.
\end{align*}
Thus, we found
\[T\left(\begin{bmatrix}
3 \\
-2
\end{bmatrix}\right)
=\begin{bmatrix}
-7 \\
-2 \\
3
\end{bmatrix}.
\]
Give the Formula for a Linear Transformation from $\R^3$ to $\R^2$
Let $T: \R^3 \to \R^2$ be a linear transformation such that
\[T(\mathbf{e}_1)=\begin{bmatrix}
1 \\
4
\end{bmatrix}, T(\mathbf{e}_2)=\begin{bmatrix}
2 \\
5
\end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix}
3 \\
6 […]
Vector Space of Polynomials and Coordinate Vectors
Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\]
where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}
(a) Use the basis […]
Any Vector is a Linear Combination of Basis Vectors Uniquely
Let $B=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a basis for a vector space $V$ over a scalar field $K$. Then show that any vector $\mathbf{v}\in V$ can be written uniquely as
\[\mathbf{v}=c_1\mathbf{v}_1+c_2\mathbf{v}_2+c_3\mathbf{v}_3,\]
where $c_1, c_2, c_3$ are […]
Linear Transformation to 1-Dimensional Vector Space and Its Kernel
Let $n$ be a positive integer. Let $T:\R^n \to \R$ be a non-zero linear transformation.
Prove the followings.
(a) The nullity of $T$ is $n-1$. That is, the dimension of the nullspace of $T$ is $n-1$.
(b) Let $B=\{\mathbf{v}_1, \cdots, \mathbf{v}_{n-1}\}$ be a basis of the […]
Determine linear transformation using matrix representation
Let $T$ be the linear transformation from the $3$-dimensional vector space $\R^3$ to $\R^3$ itself satisfying the following relations.
\begin{align*}
T\left(\, \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
0 \\
1 […]
Linear Transformation and a Basis of the Vector Space $\R^3$
Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$.
Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$.
Show […]
Isomorphism of the Endomorphism and the Tensor Product of a Vector Space
Let $V$ be a finite dimensional vector space over a field $K$ and let $\End (V)$ be the vector space of linear transformations from $V$ to $V$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for $V$.
Show that the map $\phi:\End (V) \to V^{\oplus n}$ defined by […]
Vector Space of Polynomials and a Basis of Its Subspace
Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
\[Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},\]
where
\begin{align*}
&p_1(x)=1, &p_2(x)=x^2+x+1, \\
&p_3(x)=2x^2, &p_4(x)=x^2-x+1.
\end{align*}
(a) Use the basis $B=\{1, x, […]