Isomorphism of the Endomorphism and the Tensor Product of a Vector Space

Problems and solutions in Linear Algebra

Problem 80

Let $V$ be a finite dimensional vector space over a field $K$ and let $\End (V)$ be the vector space of linear transformations from $V$ to $V$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for $V$.
Show that the map $\phi:\End (V) \to V^{\oplus n}$ defined by $f\mapsto (f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ is an isomorphism.
Here $V^{\oplus n}=V\oplus \dots \oplus V$, the direct sum of $n$ copies of $V$.
LoadingAdd to solve later

Hint.

Show that

  1. $\phi$ is a homomorphism
  2. $\phi$ is injective.
  3. $\phi$ is surjective.

You may want to consider the matrix representation of a linear transformation $f$ with respect to the given basis $\mathbf{v}_1, \dots, \mathbf{v}_n$.

Proof.

We first show that $\phi$ is a linear transformation.

Let $f, g\in \End(V)$. Then
\begin{align*}
\phi(f+g)&=((f+g)(\mathbf{v}_1), \dots, (f+g)(\mathbf{v}_n))\\
&=(f(\mathbf{v}_1)+g(\mathbf{v}_1), \dots, f(\mathbf{v}_n)+g(\mathbf{v}_n))\\
&=(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))+(g(\mathbf{v}_1), \dots, g(\mathbf{v}_n))\\
&=\phi(f)+\phi(g).
\end{align*}
For $f\in \End(V)$, $c\in K$, we have
\begin{align*}
\phi(cf)&= (cf(\mathbf{v}_1), \dots, cf(\mathbf{v}_n))\\
&=c(f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))\\
&=c\phi(f).
\end{align*}
Therefore, $\phi$ is a linear transformation.

We prove that $\phi$ is bijection.

To prove $\phi$ is injection,

suppose that $\phi(f)=\mathbf{0}$ for $f \in \End(V)$. That is, we have $f(\mathbf{v}_1)=\dots=f(\mathbf{v}
_n)=0$.
For any vector $\mathbf{v}\in V$, we have a linear combination
\[\mathbf{v}=c_1\mathbf{v}_1+\cdots+c_n \mathbf{v}_n\] for $c_1,\dots, c_n \in K$. Then
\begin{align*}
f(\mathbf{v})&=f(c_1\mathbf{v}_1+\cdots+c_n \mathbf{v}_n)\\
&=c_1f(\mathbf{v}_1)+\cdots+c_n f(\mathbf{v}_n)\\
&=c_1 0+\dots +c_n 0=0.
\end{align*}
Thus $f(\mathbf{v})=0$ for any $\mathbf{v} \in V$, hence $f=0$ and $\phi$ is injective.

To show that $\phi$ is surjective,

let $(\mathbf{u}_1, \dots, \mathbf{u}_n)\in V^{\oplus n}$ be an arbitrary vector in $ V^{\oplus n}$.
Using the basis $\mathbf{v}_1, \dots, \mathbf{v}_n$, we have linear combinations
\[\mathbf{u}_i=c_{1i}\mathbf{v}_1+\cdots+c_{ni} \mathbf{v}_n\] for some $c_{1i}, \dots, c_{ni} \in K$ for $1\leq i \leq n$.
Let $f \in \End(V)$ be a linear transformation whose matrix representation with respect to the basis $B:=\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is given by
\[[f]_B=\begin{bmatrix}
c_{11} & c_{12} & \dots & c_{1n} \\
c_{21} &c_{22} & \dots & c_{2n} \\
\vdots & \vdots & \vdots & \vdots \\
c_{n1} & c_{n2} & \dots & c_{nn}
\end{bmatrix}.\] Since $[f]_B=[\,[f(\mathbf{v}_1)]_B \dots, [f(\mathbf{v}_n)]_B\,]$, we have
\[[f(\mathbf{v}_i)]_B=\begin{bmatrix}
c_{1i} \\
c_{2i} \\
\vdots \\
c_{ni}
\end{bmatrix}.\] Namely, we have
\[f(\mathbf{v}_i)=c_{1i}\mathbf{v}_1+\cdots+c_{ni} \mathbf{v}_n=\mathbf{u}_i.\] Therefore $\phi(f)= (\mathbf{u}_1, \dots, \mathbf{u}_n)\in V^{\oplus n}$ and $\phi$ is surjective.

In conclusion, $\phi$ is a bijective homomorphism from $\End(V)$ to $V^{\oplus n}$. Thus $\End(V)$ and $V^{\oplus n}$ are isomorphic.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
The Vector Space Consisting of All Traceless Diagonal Matrices

Let $V$ be the set of all $n \times n$ diagonal matrices whose traces are zero. That is, \begin{equation*} V:=\left\{...

Close