A Matrix Representation of a Linear Transformation and Related Subspaces

Ohio State University exam problems and solutions in mathematics

Problem 164

Let $T:\R^4 \to \R^3$ be a linear transformation defined by
\[ T\left (\, \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} \,\right) = \begin{bmatrix}
x_1+2x_2+3x_3-x_4 \\
3x_1+5x_2+8x_3-2x_4 \\
x_1+x_2+2x_3
\end{bmatrix}.\]

(a) Find a matrix $A$ such that $T(\mathbf{x})=A\mathbf{x}$.

(b) Find a basis for the null space of $T$.

(c) Find the rank of the linear transformation $T$.

(The Ohio State University Linear Algebra Exam Problem)
 
LoadingAdd to solve later

Solution.

(a) A matrix representation of a linear transformation

Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$, and $\mathbf{e}_4$ be the standard 4-dimensional unit basis vectors for $\R^4$.
Then the matrix representation for the linear transformation is given by the formula
\[A:=\begin{bmatrix}
T(\mathbf{e}_1) \quad T(\mathbf{e}_2) \quad T(\mathbf{e}_3)\quad T(\mathbf{e}_4)
\end{bmatrix}.\] Then we calculate
\begin{align*}
T(\mathbf{e}_1)=T \left(\,\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \, \right)
=\begin{bmatrix}
1\\3\\1
\end{bmatrix}.
\end{align*}


Similarly, we compute and obtain
\[ T(\mathbf{e}_2) =\begin{bmatrix}
2\\5\\1
\end{bmatrix}, T(\mathbf{e}_3)=\begin{bmatrix}
3\\8\\2
\end{bmatrix}, T(\mathbf{e}_4)=\begin{bmatrix}
-1\\-2\\0
\end{bmatrix}.\]

Therefore the matrix $A$ we are looking for is
\[A=\begin{bmatrix}
1 & 2 & 3 & -1\\
3 & 5 & 8 & -2\\
1 & 1& 2 & 0
\end{bmatrix}.\]

(b) The null space of the linear transformation

First, note that the null space of a linear transformation $T$ is the same as the null space of the matrix $A$ that represents $T$.
Thus, we find a basis for the null space of the matrix $A$ we obtained in (a).

The null space of $A$ consists of the solutions of $A\mathbf{x}=\mathbf{0}$ and so we apply Gauss-Jordan elimination process to solve the linear equation as follows. We apply the elementary row operations to the augmented matrix $[A|\mathbf{0}]$ of $A$.
\begin{align*}
[A|\mathbf{0}]&= \left[\begin{array}{rrrr|r}
1 & 2 & 3 & -1 &0\\
3 & 5 & 8 & -2&0\\
1 & 1& 2 & 0 &0
\end{array} \right] \xrightarrow[R_3-R_1]{R_2-3R_1}
\left[\begin{array}{rrrr|r}
1 & 2 & 3 & -1 &0\\
0 & -1 & -1 & 1&0\\
0 & -1& -1 & 1 &0
\end{array} \right]\\
& \xrightarrow[\text{then } -R_2]{R_3-R_2}
\left[\begin{array}{rrrr|r}
1 & 2 & 3 & -1 &0\\
0 & 1 & 1 & -1&0\\
0 & 0 & 0 & 0 &0
\end{array} \right] \xrightarrow{R_1-2R_2}
\left[\begin{array}{rrrr|r}
1 & 0 & 1 & 1 &0\\
0 & 1 & 1 & -1&0\\
0 & 0 & 0 & 0 &0
\end{array} \right].
\end{align*}
Therefore the solutions are
\begin{align*}
x_1&=-x_3-x_4\\
x_2&=-x_3+x_4
\end{align*}
and thus the solution $\mathbf{x}$ of $A\mathbf{x}=\mathbf{0}$ is of the form
\[\mathbf{x}=\begin{bmatrix} -x_3-x_4\\
-x_3+x_4\\
x_3\\
x_4
\end{bmatrix}
=x_3 \begin{bmatrix} -1\\-1\\1\\0 \end{bmatrix}+x_4\begin{bmatrix} -1\\1\\0\\1
\end{bmatrix}.\] Hence we have
\[\calN(T)=\calN(A)=\Span\left\{\, \begin{bmatrix} -1\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1
\end{bmatrix} \, \right\}\] and the set
\[B:=\left\{\, \begin{bmatrix} -1\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1
\end{bmatrix}\, \right\}\] is a spanning set for the null space $\calN(T)$.

We claim that the set $B$ is linearly independent. Indeed, if we have a linear combination
\[a_1\begin{bmatrix} -1\\-1\\1\\0 \end{bmatrix}+a_2\begin{bmatrix} -1\\1\\0\\1
\end{bmatrix}=\mathbf{0},\] then we have
\[\begin{bmatrix} -a_1-a_2\\
-a_1+a_2\\
a_1\\
a_2
\end{bmatrix}=\mathbf{0}\] and thus $a_1=a_2=0$ and the set $B$ is linearly independent.

Since $B$ is a linearly independent spanning set for the null space $\calN(T)$, the set $B$ is a basis for $\calN(T)$.
In summary, we found a basis
\[B:=\left\{\, \begin{bmatrix} -1\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\0\\1
\end{bmatrix}\, \right\}.\]

(c) The rank of the linear transformation

We apply the rank-nullity theorem to find the rank of $T$.
From part (b), we see that nullity, the dimension of the null space $\calN(T)$, is $2$.

The linear transformation is a map from $\R^4$ to $\R^3$. Thus the rank-nullity theorem states that we have
\[\text{rank of } T + \text{nullity of } T=4\] \[\text{rank of } T + 2=4.\] Therefore the rank of the linear transformation $T$ is 2.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Ohio State University exam problems and solutions in mathematics
Inner Product, Norm, and Orthogonal Vectors

Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$...

Close