Each Element in a Finite Field is the Sum of Two Squares

Problems and Solutions in Field Theory in Abstract Algebra

Problem 511

Let $F$ be a finite field.
Prove that each element in the field $F$ is the sum of two squares in $F$.

LoadingAdd to solve later

Sponsored Links

Proof.

Let $x$ be an element in $F$. We want to show that there exists $a, b\in F$ such that
\[x=a^2+b^2.\]

Since $F$ is a finite field, the characteristic $p$ of the field $F$ is a prime number.


If $p=2$, then the map $\phi:F\to F$ defined by $\phi(a)=a^2$ is a field homomorphism, hence it is an endomorphism since $F$ is finite.( The map $\phi$ is called the Frobenius endomorphism).

Thus, for any element $x\in F$, there exists $a\in F$ such that $\phi(a)=x$.
Hence $x$ can be written as the sum of two squares $x=a^2+0^2$.


Now consider the case $p > 2$.
We consider the map $\phi:F^{\times}\to F^{\times}$ defined by $\phi(a)=a^2$. The image of $\phi$ is the subset of $F$ that can be written as $a^2$ for some $a\in F$.

If $\phi(a)=\phi(b)$, then we have
\[0=a^2-b^2=(a-b)(a+b).\] Hence we have $a=b$ or $a=-b$.
Since $b \neq 0$ and $p > 2$, we know that $b\neq -b$.
Thus the map $\phi$ is a two-to-one map.

Thus, there are $\frac{|F^{\times}|}{2}=\frac{|F|-1}{2}$ square elements in $F^{\times}$.
Since $0$ is also a square in $F$, there are
\[\frac{|F|-1}{2}+1=\frac{|F|+1}{2}\] square elements in the field $F$.

Put
\[A:=\{a^2 \mid a\in F\}.\] We just observed that $|A|=\frac{|F|+1}{2}$.

Fix an element $x\in F$ and consider the subset
\[B:=\{x-b^2 \mid b\in F\}.\] Clearly $|B|=|A|=\frac{|F|+1}{2}$.

Observe that both $A$ and $B$ are subsets in $F$ and
\[|A|+|B|=|F|+1 > |F|,\] and hence $A$ and $B$ cannot be disjoint.

Therefore, there exists $a, b \in F$ such that $a^2=x-b^2$, or equivalently,
\[x=a^2+b^2.\]

Hence each element $x\in F$ is the sum of two squares.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Explicit Field Isomorphism of Finite FieldsExplicit Field Isomorphism of Finite Fields (a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic. (b) Show that the polynomials […]
  • The Number of Elements in a Finite Field is a Power of a Prime NumberThe Number of Elements in a Finite Field is a Power of a Prime Number Let $\F$ be a finite field of characteristic $p$. Prove that the number of elements of $\F$ is $p^n$ for some positive integer $n$. Proof. First note that since $\F$ is a finite field, the characteristic of $\F$ must be a prime number $p$. Then $\F$ contains the […]
  • In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable.In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable. Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$. Comment. Remark that if $A$ is a square […]
  • Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse ElementsProve that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements Let $\F_3=\Zmod{3}$ be the finite field of order $3$. Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$. (a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have? (b) […]
  • Polynomial $x^p-x+a$ is Irreducible and Separable Over a Finite FieldPolynomial $x^p-x+a$ is Irreducible and Separable Over a Finite Field Let $p\in \Z$ be a prime number and let $\F_p$ be the field of $p$ elements. For any nonzero element $a\in \F_p$, prove that the polynomial \[f(x)=x^p-x+a\] is irreducible and separable over $F_p$. (Dummit and Foote "Abstract Algebra" Section 13.5 Exercise #5 on […]
  • Prove that any Algebraic Closed Field is InfiniteProve that any Algebraic Closed Field is Infinite Prove that any algebraic closed field is infinite.     Definition. A field $F$ is said to be algebraically closed if each non-constant polynomial in $F[x]$ has a root in $F$. Proof. Let $F$ be a finite field and consider the polynomial \[f(x)=1+\prod_{a\in […]
  • Two Quadratic Fields $\Q(\sqrt{2})$ and $\Q(\sqrt{3})$ are Not IsomorphicTwo Quadratic Fields $\Q(\sqrt{2})$ and $\Q(\sqrt{3})$ are Not Isomorphic Prove that the quadratic fields $\Q(\sqrt{2})$ and $\Q(\sqrt{3})$ are not isomorphic.   Hint. Note that any homomorphism between fields over $\Q$ fixes $\Q$ pointwise. Proof. Assume that there is an isomorphism $\phi:\Q(\sqrt{2}) \to \Q(\sqrt{3})$. Let […]
  • Any Automorphism of the Field of Real Numbers Must be the Identity MapAny Automorphism of the Field of Real Numbers Must be the Identity Map Prove that any field automorphism of the field of real numbers $\R$ must be the identity automorphism.   Proof. We prove the problem by proving the following sequence of claims. Let $\phi:\R \to \R$ be an automorphism of the field of real numbers […]

You may also like...

1 Response

  1. 07/17/2017

    […] the post↴ Each Element in a Finite Field is the Sum of Two Squares for a proof of this […]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Field Theory
Field theory problems and solution in abstract algebra
Any Automorphism of the Field of Real Numbers Must be the Identity Map

Prove that any field automorphism of the field of real numbers $\R$ must be the identity automorphism.  

Close