Prove that any Algebraic Closed Field is Infinite

Problems and Solutions in Field Theory in Abstract Algebra

Problem 398

Prove that any algebraic closed field is infinite.

 
LoadingAdd to solve later

Sponsored Links


 

Definition.

A field $F$ is said to be algebraically closed if each non-constant polynomial in $F[x]$ has a root in $F$.

Proof.

Let $F$ be a finite field and consider the polynomial
\[f(x)=1+\prod_{a\in F}(x-a).\] The coefficients of $f(x)$ lie in the field $F$, and thus $f(x)\in F[x]$. Of course, $f(x)$ is a non-constant polynomial.

Note that for each $a \in F$, we have
\[f(a)=1\neq 0.\] So the polynomial $f(x)$ has no root in $F$.
Hence the finite field $F$ is not algebraic closed.

It follows that every algebraically closed field must be infinite.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Polynomial $x^p-x+a$ is Irreducible and Separable Over a Finite FieldPolynomial $x^p-x+a$ is Irreducible and Separable Over a Finite Field Let $p\in \Z$ be a prime number and let $\F_p$ be the field of $p$ elements. For any nonzero element $a\in \F_p$, prove that the polynomial \[f(x)=x^p-x+a\] is irreducible and separable over $F_p$. (Dummit and Foote "Abstract Algebra" Section 13.5 Exercise #5 on […]
  • Prove that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse ElementsProve that $\F_3[x]/(x^2+1)$ is a Field and Find the Inverse Elements Let $\F_3=\Zmod{3}$ be the finite field of order $3$. Consider the ring $\F_3[x]$ of polynomial over $\F_3$ and its ideal $I=(x^2+1)$ generated by $x^2+1\in \F_3[x]$. (a) Prove that the quotient ring $\F_3[x]/(x^2+1)$ is a field. How many elements does the field have? (b) […]
  • Explicit Field Isomorphism of Finite FieldsExplicit Field Isomorphism of Finite Fields (a) Let $f_1(x)$ and $f_2(x)$ be irreducible polynomials over a finite field $\F_p$, where $p$ is a prime number. Suppose that $f_1(x)$ and $f_2(x)$ have the same degrees. Then show that fields $\F_p[x]/(f_1(x))$ and $\F_p[x]/(f_2(x))$ are isomorphic. (b) Show that the polynomials […]
  • Application of Field Extension to Linear CombinationApplication of Field Extension to Linear Combination Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$. Let $\alpha$ be any real root of $f(x)$. Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$.   Proof. We first prove that the polynomial […]
  • Irreducible Polynomial $x^3+9x+6$ and Inverse Element in Field ExtensionIrreducible Polynomial $x^3+9x+6$ and Inverse Element in Field Extension Prove that the polynomial \[f(x)=x^3+9x+6\] is irreducible over the field of rational numbers $\Q$. Let $\theta$ be a root of $f(x)$. Then find the inverse of $1+\theta$ in the field $\Q(\theta)$.   Proof. Note that $f(x)$ is a monic polynomial and the prime […]
  • Each Element in a Finite Field is the Sum of Two SquaresEach Element in a Finite Field is the Sum of Two Squares Let $F$ be a finite field. Prove that each element in the field $F$ is the sum of two squares in $F$. Proof. Let $x$ be an element in $F$. We want to show that there exists $a, b\in F$ such that \[x=a^2+b^2.\] Since $F$ is a finite field, the characteristic $p$ of the field […]
  • Galois Group of the Polynomial $x^2-2$Galois Group of the Polynomial $x^2-2$ Let $\Q$ be the field of rational numbers. (a) Is the polynomial $f(x)=x^2-2$ separable over $\Q$? (b) Find the Galois group of $f(x)$ over $\Q$.   Solution. (a) The polynomial $f(x)=x^2-2$ is separable over $\Q$ The roots of the polynomial $f(x)$ are $\pm […]
  • Degree of an Irreducible Factor of a Composition of PolynomialsDegree of an Irreducible Factor of a Composition of Polynomials Let $f(x)$ be an irreducible polynomial of degree $n$ over a field $F$. Let $g(x)$ be any polynomial in $F[x]$. Show that the degree of each irreducible factor of the composite polynomial $f(g(x))$ is divisible by $n$.   Hint. Use the following fact. Let $h(x)$ is an […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Field Theory
Field theory problems and solution in abstract algebra
Extension Degree of Maximal Real Subfield of Cyclotomic Field

Let $n$ be an integer greater than $2$ and let $\zeta=e^{2\pi i/n}$ be a primitive $n$-th root of unity. Determine...

Close